
OnObject: Programming of Physical Objects for
Gestural Interaction

by

Keywon Chung

B.F.A., Carnegie Mellon University, 2001

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning

in partial fulfillment of the requirements for the degree of

MASSACHUSETTS INSTITUTE
OF TEICHNOLOGY

SEVP 141

ARCHIVES

Master of Science in Media Arts and Sciences
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2010
© Massachusetts Institute of Technology 2010. All rights reserved.

A uthorI ...-----.... ------------. --------------------
Keywon Chung

Program in Media Arts and Sciences,
School of Architecture and Planning

August 6, 2010

J.

Certified by 7.. -r -h
Hiroshi Ishii

Muriel R. Cooper Professor of Media Arts and Sciences
Thesis Supervisor

Accepted by...-----
Pattie Maes

Chairperson, Departmental Committee on
Graduate Students Program in Media Arts and Sciences

Abstract
Tangible User Interfaces (TUIs) have fueled our imagination about the future of

computational user experience by coupling physical objects and activities with

digital information. Despite their conceptual popularity, TUIs are still difficult and
time-consuming to construct, requiring custom hardware assembly and software
programming by skilled individuals. This limitation makes it impossible for end

users and designers to interactively build TUIs that suit their context or embody
their creative expression.

OnObject enables novice end users to turn everyday objects into gestural interfaces

through the simple act of tagging. Wearing a sensing device, a user adds a behavior
to a tagged object by grabbing the object, demonstrating a trigger gesture, and

specifying a desired response. Following this simple Tag-Gesture-Response
programming grammar, novice end users are able to transform mundane objects
into gestural interfaces in 30 seconds or less. Instead of being exposed to low-level

development tasks, users are can focus on creating an enjoyable mapping between

gestures and media responses. The design of OnObject introduces a novel class
of Human-Computer Interaction (HCI): gestural programming of situated physical
objects.

This thesis first outlines the research challenge and the proposed solution. It then
surveys related work to identify the inspirations and differentiations from existing
HCI and design research. Next, it describes the sensing and programming hardware
and gesture event server architecture. Finally, it introduces a set of applications
created with OnObject and gives observations from user participated sessions.

Thesis Supervisor: Hiroshi Ishii

Title: Muriel R. Cooper Professor of Media Arts and Sciences

Figure 1
Various gesture
objects used in
OnObject
applications, with
RFID tags (black)
attached.

OnObject: Programming of Physical Objects for
Gestural Interaction

by

Keywon Chung

The following people served as readers for this thesis:

(

/

Thesis Reader

5, f

...
Hiroshi Ishii

Muriel R. Cooper Professor of Media Arts and Sciences
MIT Media Lab

~~ZIIiii~
Thesis Reader

Pattie Maes
Muriel R. Cooper Professor of Media Arts and Sciences

MIT Media Lab

Thesis Reader
Desney Tan

Senior Researcher and Research Manager, Microsoft Research
Affiliate Assistant Professor, University of Washington

Acknowledgment
A big gratitude goes to my advisor Professor Hiroshi Ishii, thanks to whom I have had invaluable two
years of exploring and executing my personal vision of bottom-up, user-defined uiquitous computing.
Thank you for lending valuable family play time as well.

And I would like to thank...

... Thesis readers Professors Pattie Maes and Desney Tan, for their concrete suggestions and letting
me get a glimpse at their research aesthetics.

... Collaborators who helped make this idea come alive: Michael Shilman, Chris Merrill, E Roon Kang,
Min Lee, and Bosung Kim; technical advisors Rich Fletcher and Selene Mota, for walking me through
the RFID antenna design and the Wockets gesture recognizer; logistics maven Lisa Lieberman and
Sarah Hunter, who took care of the many underlying needs.

... Colleagues and friends, for their research, prototyping, and morale guidance: Cati Vaucelle, Daniel
Leithinger, Jean-Baptiste Labrune, Adam Kumpf, Sean Follmer, Xiao Xiao, Jinha Lee, Jaewoo Chung,
Kimin Jun, Jaebum Joo, Siguraur Orn, Carnaven Chiu, Peggy Chi, Richard The, Sey Min, Seth Hunter,
Andrea Cola o, Inna Lobel, Sohin Hwang, Jaekyung Jung, Kyunghee Kim and Nicole Shumaker.

... My parents and family in Korea who supported my learning, and my parents-in-law in California
who tolerated my absence, thank you.

And again my husband, machine learning teacher, personal trainer, and proof reader Michael Shilman:
let's celebrate the end of the long distance tunnel, the soju is on me.

Content
The Idea 8

The Problem 10

Research Goals 15

OnObject Approach - . . . - 16

Novel Interactions 20

Contributions 20

Related Work 24
Positioning and Differentiation 26

Multi-State Object in Product Design 27

Motion Sensing Technologies 29

RFID Tracking............. 31

Multimodal Sensing with Mobile and Wearable Devices 34

Gesture Object Interface -. 36

Form- and Interactivity-Giving Tools 38

Pervasive Tracking and Gaming............... -. .. 40

Programming by Demonstration 42

System Design and User Experience 44
Form Factors and Affordances................ 46

Out-of-Box Experience 54

Tag-Gesture-Response Flow 55

Creating OnObject Applications 59

Implementation 64
Implementation Strategy 66

Hardware 67

Software 70

Applications and Evaluation 78
Reconstructing Existing TUIs 80

Tangible Thinking in Product Development 87

Storytelling and Entertainment 89

Evaluation Sessions 102

Analysis and Reflections 113

Conclusions and Future Work 120
Defining Contributions 122

Future Work 123

Appendices 126
A. Hardware diagram 127

B. Hardware firmware Arduino code 129

C. Basic application code 135

Bibliography 142

Image Credits 146

Chapter 1

The Idea

This chapter outlines the challenges this research aims

to address, introduces the OnObject approach used to

solve the problems, and highlights the novel interaction

and research contributions from the approach and

implementation.

Figure 2
First quick-and-dirty prototype of the
OnObject concept in June 2009: An RFID
reader and a piezo sensor are mounted
to the user's hand to add gestural control
to musicBottles. When the user grabs the
bottlecap, music plays; when the user
shakes the bottlecap, a beat sound plays on
top of the music sound.

A

ge VPPP,,,

1. The Problem
While many Tangible User Interface systems employ sensor-equipped
physical objects, they do not easily scale to situated everyday
objects: the process requires significant modification or custom
fabrication of the host objects, hardware assembly, and software
coding by skilled individuals. Such involved development process not
only limits participation from novice end users, but results in pre-
meditated mapping of input and output events and user interaction
that cannot be easily modified to reflect the end user's wishes and
circumstances.

Interacting with
Situated Objects
Historic and recent Tangible User Interfaces (TUIs) have incorporated common physical
objects, from Marble Answering Machine, musicBottles, to I/O Brush, reacTable and
Amagatana+Fula [17, 9, 20, 11, 12]. Everyday objects are not only easy to acquire and
understand, but also can be more meaningful because they are repeatedly used in
context and are associated with certain notions and experiences individual users value.
Nevertheless, it has remained elusive to develop of a method for end users to easily co-
opt situated objects and couple their states with digital information, whether a sensing
platform is used or the sensing hardware is embedded inside the objects.

Objects on a Sensing Platform
Ever since Ishii and Ullmer introduced phicons to allow users to manipulate graphical
user interface (GUI) elements through specifically designed physical objects [34], many
initiatives have endeavored to generalize platform-based sensing to everyday objects.
musicBottles showed that tabletop sensing can be used for emotive experience with a
poetic coupling between opening of the bottle and curated music. More recently, many
platforms including reacTable, Trackmate and G-Speak have co-opted everyday objects
into the user experience by marking them with tags detected by externally-referenced
vision and sensing systems [11, 36, 37].

Marker-based systems scale relatively well to a larger number of objects, as you can
co-opt a new object by applying a marker to the object and modifying the software
to produce desired response to the marker. However, the user experience often lacks
the immediacy and physicality of action-based interaction, as the objects are used as
simple tokens to abstract information and their physical affordances are not actively
leveraged other than the object being moved and rotated as a whole. Besides, objects
have to be removed from their natural context to be placed within the sensing area,
unless the user possesses a large enough sensing platform to encompass their natural
activity areas - a setting that is costly and immobile.

Objects as Custom Housing
A particularly compelling subset of Tangible Interfaces consists of a common physical
object housing sensing hardware. These interfaces are intuitive and often delightful
thanks to their clear physical affordances and user expectations. Those who encounter
the I/0 Brush can immediately understand that the interface is to be grabbed by the
handle and painted with thanks to their prior experience with paintbrushes. Users are
then pleasantly surprised to see the novel capabilities of the brush, as it is augmented
with electronic hardware and software. Amagatana + Fula is another recent example
where sensor-embedded umbrellas produce sword-like sound effects when swung.
Wearable computing projects also consist of garments housing hardware components.

However, while these interfaces take the form of everyday objects, the physical
artifacts have to be specially fabricated to enclose the sensing hardware (I/0 Brush
and wearab[es) or significantly modified to house them (Amagatana). The augmented
objects made with this approach are essentially one-off creations. This approach is far
from supporting end users to couple actually situated objects with digital information
as they desire.

Input-Output (Re)Mapping
With both approaches mentioned above, an important hurdle is configuring the
behavior of a newly-opted physical object. When sensing hardware is housed in the
object, every new object requires design and development, fabrication, and testing
of the sensing hardware and the housing. This lengthy process renders the quick
adaptation of new objects impossible. Even if a sensing platform is used to detect a
new object immediately, the user still has to delve into low-level tasks of application
coding or analysis of sensor data. The same difficulties arise when user wishes to simply
change the mapping between input and output events. As a result, many Tangible
Interfaces can only offer pre-defined output responses that cannot be updated or
modified reflecting the changing wish or circumstances of the users. With such rigid
interaction, adaptation of numerous situated physical objects for varying user desires
remains unattainable.

touch
sensors

Figure 3 Objects on sensing platforms: Reactable (top left), G-Speak (top right).
Objects housing sensing hardware: I/O Brush (bottom left), Amagatana (bottom right).

.- - - ----_- V

System Design Criteria
What does it take for end users to create interactive experiences with everyday objects
around them? In the scope of this work, we focus on the following four qualities that are
not currently met by the common TUI development process.

Low Entry Barrier
It is difficult to expect end users to learn and cope with the coding, analysis and project
management tasks to get the seemingly simple enjoyment of hearing sound effects
when they open a bottle or sword sound when they swing an umbrella. Echoing this
observation, Klemmer et al. noted "developing Tangible Interfaces is problematic
because programmers are responsible for acquiring and abstracting physical input.
This is difficult, time-consuming, and requires a high level of technical expertise...
Consequently, only a small cadre of technology experts can currently build these Uls"
[33].

Scale and Propagation
Once one object has been incorporated into an interactive application, it should be
considerably faster and easier to add another one like it or a slightly different one. It
is worth taking the time to learn how to create a mouse-over animation in Adobe Flash
or Processing if one can easily duplicate the files and repurpose them for later use. As
stated above, creating another sensor-embedded object like I/O Brush or Amagatana
costs considerable efforts, and the task of input-output mapping for the new objects
remains too involved for end users to casually engage in.

Room for Quick Experiments
In many creative tasks, creators are encouraged to capture the virtues of momentary
ideas and the motivation behind them with a quick sketch, voice notes, or prototypes.
When end users have an idea for an interactive object, it is important that they can see
it manifested without prolonged distraction. Unfortunately, creators of TUIs must go
through multiple phases of tasks away from their original moment of ideation, tending
to low-level tasks. Even recently developed toolkits such as Exemplar or d.tools expose
users to raw sensor data, forcing users to change their context [6, 7]. The complex and

disjointed process of building a functional interface prohibits timely validation of the
initial idea and motivation.

User-Defined Mappings
Despite the original vision of Tangible Bits where TUIs would "augment the real
physical world by coupling digital information to everyday physical objects and
environments [38]," the rigid TUI design process does not allow end users to define the
mapping between input and output events. Dey et al. explained their reasoning behind
creating a CAPpella, a system designed to empower end-users in building sensor-based
applications [3]:

- End-users have more in-depth knowledge about their activities environments than
any developer.

- If only a developer can control system behavior, the user will be unable to evolve
the system when her environments or activities change.

- Especially in a context-aware application, user are best suited to build and
configure an application to do what they want when they want it.

Carvey et al. asserted that allowing users to define the mapping between physical object
and digital output has been often overlooked in the TUI research, and that "for simple
everyday tasks that vary and are constantly changing, specifically customized physical
objects may not be desired or even practical. [35] "

1.2 Research Goals
OnObject aims to provide a way for novice end users to rapidly
transform situated physical objects into individualized gesture
interfaces in the context of use, without a lengthy development
process.

Rapid Incorporation of Situated Objects

We stipulate that current development process of Tangible Interfaces prohibits end
users to quickly co-opt situated objects into interactive experience, and that two
challenges lie at the core of this problem: rapid mapping of input user action and
system output, and re-mapping of the input and output at will. The goal of OnObject is
to provide an end-user-friendly method of mapping input events on a situated object to
an output event on the computer.

Simplicity and Expressivity
In order for such a method to be end-user-friendly, the process of creating a TUI
application out of physical objects needs to be extremely simple, yet the resulting
interaction has to be engaging, satisfying the interaction ideals of Tangible Interfaces
with a focus on direct manipulation and bodily engagement.

Many projects have recently created token-based applications with situated objects.
For example, the weight-based "Amphibian" platform by Carvey et al. and RFID-based
bowl container by Martinussen et al. both trigger playback events when the object is
placed on them [35, 40]. While these are intended to be simple to use and the resulting
interaction can be amusing or convenient, the binary form of input events (on/off the
table) does not provide continuous manipulation and lacks in the dimension of bodily
engagement.

OnObject aims to employ bodily motion and direct manipulation of objects as the
input events - for novice end users to transform situated physical objects to gesture
interfaces in a matter of minutes.

1.3 OnObject Approach
OnObject consists of ID tags easily attachable to physical objects,
a hand-worn sensing device, and a set of software to recognize the
object in user's hand and the motion gestures the hand makes.

1.3.1 Programming of Physical
Objects
Object-oriented graphical user interfaces (GUIs) are a staple of modern computing.
Multimedia objects with properties, behaviors, and actions were once the product of
complex custom code. After years of development in GUI toolkits, design tools, and
programming by demonstration, modern software tools like Flash, Processing, and
Scratch [41, 18, 21] make it easier than ever to create rich, on-object user interfaces,
often with little or no coding.

An essential concept of GUI programming and object-oriented programming in general
is states of an object. Computer programmers can add states to on-screen objects, so
that a button knows when it is clicked, and a file knows when it's dragged. While some
man-made physical objects like collapsible or folding products have multiple states
[42], physical objects do not allow to be "programmed" with new states that can be
tracked.

1.3.2 Co-opting via Tagging
How can physical objects be made programmable and recognized by the computer?
Physical "markers" like barcodes or infrared dots are used by externally referenced
sensing platforms to label physical objects to be a part of the interactive application.

This approach is relatively simple and scales well to increasing number of objects. The
notion of "attaching" behavior to graphical objects is already widely used in interactive
GUI programming as well, where event listener methods are added to a class or instance
of graphical objects. A "tagging" approach is also advantageous for rapid experiments
with situated objects, as tagging does not require modification of the object itself
and is often reversible. Because of the simplicity associated with physical and online
tagging, users are comfortable tagging more objects and reorganizing them as their
circumstances change.

1.3.3 OnObject System
OnObject avoids using a spatially-constraining tabletop platform or occlusion-prone and
costly computer vision systems. Instead, it aims to position the sensing at the actual
locus of the interaction: the user's hand. How can each object and their states be sensed
using the hand, and how can digital behaviors be mapped to those states?

Recognizing Object ID and States
The OnObject user wears a device on her hand equipped with a short range 13.56MHz
Radio Frequency Identification (RFID) reader to recognize tagged objects she is holding
in her hand. The RFID tags most frequently used in OnObject applications are 9mm-
diameter plastic tags, easily applicable to most objects using tape or glue. Each tag
returns a unique 16-byte ID number.

Also included in the device is one tri-axis accelerometer to recognize the motion
gestures user makes with the tagged object in hand (Figure 4). The device sends the
RFID tag and accelerometer data to a nearby computer, where the tag ID, gesture ID,
and the status of a pushbutton on the device can be used to interact with various
applications. In addition to detecting the grab and release of a tagged object, a gesture
recognizer has been developed to detect a set of motion gestures - shake, swing,
thrust, tilt, circle, and fanning - using a combination of decision tree and Hidden
Markov Model. Figure 5 shows the raw RFID and accelerometer data sent from the
device.

Figure 4 The OnObject device
senses objects user grabs by an
attached RFID tag and detects
motion gestures the user makes
with their hand.

Tag3Tag1 Tag2
Circle Thrust Swing

Figure 5 Tag ID and acceleration data coming from the device.

...... O0

Shake

Swing

Tilt

Thrust

Figure 6 The pre-defined gesture set that can be recognized with OnObject software.

Grab Release

t!)
Circle Fan

... -

Attaching Digital Behaviors to Object States
For a given tag, the user can program the desired output for each gesture trigger via
demonstration, using one of the methods below.

Device Only: For a primary set of applications, the programming is done using only the
hand-worn device equipped with a button and a microphone in the following series of
steps:

- Tag: The user attaches an RFID tag to a physical object.

- Gesture: With object grabbed by the tag, the user demonstrates one of the trigger
gestures and a default sound feedback plays.

- Response: The user holds the button down, records sound response to the gesture
by speaking into the microphone, and releases the button.

- Play: When user performs the gesture from then on, the recorded sound plays.

On-Screen Tool: For other applications, the programming is done using the device and
a GUI tool. To make a shake gesture on a bell trigger a ripple video to play, user can take
the following steps:

- Tag: The user attaches an RFID tag to the bell and grabs it by the tag. The new tag
appears on the GUI tool screen on a nearby computer.

- Gesture: The user performs a shake gesture, which is displayed on the screen when
recognized.

- Response: The user picks the ripple video file on the GUI screen.

- Play: The user creates an interactive installation where a ripple effect is projected
in the room when the bell is rung.

Keystroke Mapping: Alternatively, the above programming can be done by editing a
configuration text file where each tag and gesture ID is mapped to an operating system-
wide set of keystroke events, so that a large number of software applications can
interact with physical objects.

Figure 6 depicts the pre-defined gesture palette, including tag detection gestures and
motion gestures.

1A 0Novel Interactions
See Table 1 for novel scenarios and interaction techniques enabled by OnObject. These
scenarios will be further describe in the following chapters.

1. Contributions
Simplified Method of Co-opting Situated Objects
Using tagging and hand-located sensing platform, OnObject combines a quick and
low-commitment induction of new physical objects with practical mobile sensing. This
combination supports real life situations thanks to its small form factor and reasonable
cost. Through the choice of scalable tag sensing and simple motion sensing, OnObject
supports multiple degrees of bodily engagement from simple grabbing and releasing of
an object to a series of motion gestures.

Self-contained Programming Flow
Following the Tag-Gesture-Response flow, novice end users including preschool children
are able to program physical objects to respond to gestural triggers. Device-only
programming allows users to maintain their focus on the object and their hand - the
locus of the interaction - without being distracted by complex development tasks.
The on-screen programming tool allows user gestures to trigger other audiovisual and
Internet events than user-recorded sound, while the keystroke mapping tool extends the
response further to various actions in most software applications available on the user's
computer.

Gesture Server Architecture
The OnObject software architecture abstracts the raw device data to tag ID, gesture ID,
and button state for a large number of custom and existing applications via direct or
RESTful application programming interface (API). A fixed gesture palette recognized by
machine learning algorithms and heuristics produces reliable results.

Table i
Examples if novel
applications
and interaction
techniques created
with OnObject.

f Program sound for
gestural triggers
Turn wood alphabet
letters into talking
educational device in
less than 10 seconds.

2 Createinteractive
books on plain sheets
of paper
Tags are attached to
hand-drawn characters
or scenes, where voice
and narrations are
recorded.

3 Easily create
interactive
installations
Using the on-screen
tool, an artist can
quickly create an
installation where
performer shakes a
bell and a ripple video
projection plays.

'A

....................

_ -nu** - AMOWN" - __ -

Table 1 continued
4 Play videogames with

situated objects
Virtual swordfight with
a physical Sharpie pen.

5 Copy-paste
programming
between objects
Program one object,
propagate to another,
then modify it as
necessary.

6*Create-interactive
prototypes as you
brainstorm
9 toy concepts were
prototyped in clay and
plastic by one user
within an hour.

23

Chapter 2

Related Work

OnObject relates to multitude of previous research, yet

differentiates itself by its sca[ability to situated objects

and the instant gratification of TUI creation.

Figure 7
Control Freaks by
Zhang, a motion
sensor that clamps
onto everyday
objects.

2.1 Positioning and
Differentiation
In this chapter, we examine the inspiration behind OnObject's
states-oriented approach, then survey existing approaches in object
and motion sensing, and conclude that OnObject merges wearable
sensing and programming by demonstration for rapid creation of
TUIs.

OnObject's architecture and implementation of gesture recognizer
bear resemblance to activity recognition systems including Wockets/
MITes, ReachMedia, Mobile Sensing Platform (MSP), Kim's and
Berlin's toolkits among others [31, 4, 45, 13, 2]. However, unlike
activity recognition systems, OnObject is designed for interactivity
and extemporaneous end user programming.

Compared to other sensor-based prototyping tools such as Examplar,
Thumbtacks, and a CAPpella [6, 30, 3], OnObject offers significantly
more abstracted representation of the gestural language and rapid
in-situ object programming - its palette-based approach is usable by
casual users, such as parents and children, without switching context
for low-level activities like writing code, wiring, or watching raw
input.

OnObject relates to the gestural programming by example pioneered
by Curlybot, and the definition of Gesture Object Interfaces
introduced with Picture This! [64, 23], while scaling the gestural
interaction to any situated objects in our environment with the
design principle of appropriation by attachment introduced by Zhang
and Hartmann [26].

2.2

2.2.1

2.2.2

Multi-State Objects
0in Product Design

Collapsi bles
While object-oriented thinking and state machines have been an instrumental concept
in computer science, the concept of multi-state physical objects and products has
long existed. According to design educator Per Mollerup, "collapsibles" are man-made
smart objects such as umbrellas, eyeglasses, newspapers or rubber boats possess "two
opposite states, one folded and passive, one or more unfolded and active." Ubiquitous
in our environment, collapsibles are "man-made accommodations to change. [42]"

Mollerup's definition of multi-state objects inspired OnObject's state-driven approach
to physical objects, where programmable states are added to a physical object in user's
hand.

Interaction Design
Influenced by common use of software, today's interaction designers are also
appropriating state model to design the interaction flow of electronics and software
products, claiming that "designers should be able to design [products'] logical entities
too. [43]"

OnObject extends this notion and aims to add, remove and modify logic to existing
objects while allowing users to creatively leverage the physical properties like the
shapes or materials and states of everyday objects.

Figure 8 Book cover of Mollerup's "Collapsible": Umbrella as an example.

Externally Referenced internally Referenced

Figure 9 Comparison of sensing methods.

OnObject

...

2.3 0Motion Sensing
Technologies

2.3.1 Verplaetse's

Classification
In his 1996 article, Verplaetse stated "one of the current goals of technology is to
redirect computation and communication capabilities from within the traditional
computer and into everyday objects and devices - to make smart devices. One
important function of smart devices is motion sensing. [29]"

In order to track body and object and their movements, many systems employ
infrared, video, or other methods of computer vision. The G-Speak system used by
Zigelbaum's g-stalt application uses a Vicon motion capture system to track passive IR
retroreflective dots that are arranged in unique patterns on plastic tags placed on gloves
or glued onto objects [37]. The Sensor Bar for the Nintendo Wii platform is required
when the player is controlling up-down, left-right motion to point to menu options or
objects on screen using the Wii Remote [46]. reacTable and Trackmate are two tabletop
systems that track the identity and movement of objects placed on the top surface with
cameras optically tracking fiducial markers attached on the objects [11, 36].

These tracking techniques fall into what Verplaetse classified as externally-referenced
methods. Verplaetse asserts that these methods are physically removed from the
moving object of interest, prone to occlusion and noise sources. In addition, these
techniques require physical installation in the scale of a webcam-enclosed box in the
case of Trackmate, to a room-sized motion capture system for G-Speak.

Internally-referenced sensing devices, on the other hand, "attaches directly to the
moving body of interest and gives an output signal proportional to its own motion
with respect to an inertial frame of reference. [29]" According to Verplaetse, two
types of sensors comprise inertial sensing: accelerometers for sensing translational
accelerations and gyroscopes for rotational rates.

2.3.2 Mixing Internally- and
Externa ly-Referenced
Sensing
The aforementioned Wii in fact takes a hybrid approach, utilizing both externally-
referenced (infrared Sensor Bar for positioning) and internally-referenced
(accelerometer in Wii Remote) sensing, with optional proprioceptive capability with
add-on attachment devices (accelerometer in Nunchuck and gyroscope in MotionPlus).
This mixed approach allows the Wii system to provide rich user experience without
requiring high precision equipments that are costly and complicated to setup and use.

OnObject's motion sensing is internally referenced to the point of interaction - the
user's hand - as it does not require external installation of sensing hardware and
therefore can be used in a variety of environments, including mobile contexts. On the
other hand, the object tracking is external to the objects, as the objects do not contain
the sensing devices themselves.

The combination of RFID tags on objects and sensors on the user's body minimizes the
burden of fabricating objects with embedded sensors, while the self-contained setup
makes it applicable to a significantly wider variety of contexts than using externally-
referenced methods.

2A 0RFID Tracking
2.4.1 RF Interaction for End

Users
Various forms of RFID are widely used for public transit, authentication, and tracking
of products, books, and livestock. Products like Touch-a-Tag and Violet Mir:ror [47, 48]
utilize it as a way to achieve pervasive interactivity. Using RFID to recognize everyday
objects for interactivity and entertainment is a commonly used technique in HCI. Recent
examples include a bowl-like container that plays media content associated with the
objects placed inside [40], and Sniff, a stuffed dog with an RFID reader hidden in the
nose [28].

2.4.2 Engaging RF Interaction
With their Bowl interface, Martinussen et al. conducted the a series of tests with a
2-year-old child to find usability and engagement level of physical tokens made from
situated objects [40]. Child was able to use and enjoy existing toys or new objects
as tokens that were pre-mapped to movies with clear association: e.g., a Mickey
Mouse-doll = a Mickey Mouse movie, but was confused with physical tokens used for
navigation.

Interestingly, "odd" tokens with unclear association (e.g., a stick that plays a new
movie every time child stirs it into the bowl) turned out to be very engaging and
conversational. However, it was the "homemade" tokens mapped to content created by
the child and her parent that proved to have the most potential: child enthusiastically
presented the tokens and content to the audience.

OnObject research confirms that preschool children are able to use token objects with
binary associations. Furthermore, a play session reveals that a 3-year-old is able to map

audio content (the recording of her voice) to a tagged object in less than 30 seconds,
guided by a facilitator. Anecdotal observations from OnObject demonstration and user
sessions also suggest users of "homemade" and self-mapped physical interfaces tend to
present them with much enthusiasm and some theatrical quality.

Above all, OnObject's approach enables novice users and children to quickly create
user-defined mapping that Martinussen et al. deemed the most engaging, without
resorting to complex coding and wiring tasks.

2.4.3 Beievable RF Interaction
RFID tag reading is typically used to create discrete, transactional user interactions.
Swiping a cardkey to open a door is purely functional and transactional. However, some
RF-enabled interfaces are designed to allow contextual meaning and believability: Sniff
achieves more emotive user experience by integrating the reader functionality with the
sniffing metaphor of a dog [28]. The unique form factor of reader-equipped nose is put
to contextual interpretation by the child's action of carrying the dog and the gesture
of holding it out to sniff objects of interests. musicBottles is another example that
integrates RF sensing with the bottleneck form factor, where user gestures revealing and
obscuring the tag are well matched with the embodied action of corking and uncorking
the bottle [9].

Figure 10 Examples of believable RF interfaces: Sniff (left), musicBottles (right).

........ _ _ _ _

From these examples, design principles for more believable user interaction and higher
semantic matching may be derived:

- Integration of form factors with the technical function. In the case of RF technology,
map presence and absence of a tag to a contextually plausible states (e.g., open vs.
closed bottle, sniffing vs. not sniffing through nose).

- Accompanying user gestures that are contextually meaningful. The actions user
takes to transition between above states are contextually plausible and open to
personalization (e.g., uncorking a bottle, holding the dog out toward a flower).

- Emotive response. The results produced by the motion in both cases are emotive,
like dramatic music, haptic and sensory experience.

OnObject opens up this particular design space to the end users. It is up to the end
user to determine where to place RFID tags, how to transition between tag presence
and absence, and how to interpret the motion in their context. For instance, a user may
decide that playing with a stuffed crocodile is more fun when it is grabbed by the snout,
so she can map sound effects to the talking, singing or eating of the animal.

2.4.4 Beyond Associative
Media

In his Papier-M~ch6 research, Klemmer classified TUIs into spatial, topological,
associative and forms applications. In associative applications, "physical objects serve
as an index or 'physical hyperlink' to digital media. [33] " The aforementioned Marble
Answering Machine, Amphibian platform, Bowl, Sniff, and Mir:ror are examples of
associative applications.

OnObject employs tagging as in most associative media. However, in addition to the
tag-sensing gesture (grab and release), OnObject users can add more motion gestures
while the tag is present or absent. Grabbing and opening the mouth of the crocodile can
trigger one sound, but shaking and trembling the mouth can trigger another, such as
threatening hissing sound.

Multimodal Sensing
with Mobile and
Wearable Devices

2.5.1 Inertial Proprioceptive

Mobile Devices
Verplaetse explains that proprioceptive devices "have a sense of themselves,
particularly a sense of their own motions. Embedded with inertial sensors, these
devices are capable of autonomously sensing their own motions and orientations and
reacting accordingly." [29]

Graspables take a unique approach in re-configuring the screen of a digital handheld
device depending on how the user grabs it with her hands. Using capacitive sensors
to detect where user grabs the device, and an accelerometer to determine the angle, it
changes the screen from phone layout to a camera, PDA, or gamepad layout and vice
versa. [49]

Spearheaded by the Apple iPhone, many mobile phones are now equipped with multiple
sensors including accelerometers and an internal compass. The iPhone's sensors detect
ambient light level, proximity from the device to user's body, and the orientation of the
device, in addition high-fidelity multitouch input on its display [50].

While these devices are able to sense their own states and movements, their primary
function is communication and information display, as opposed to OnObject's purpose
of TUI creation and configuration of user's environment. These screen-centric devices
also are intended to be the focus of the interaction and occupy both user's hand and
foreground attention. The OnObject device, on the other hand, augments user's hand

during the interaction with physical objects in hand. The result of the interaction is
contingent to the various objects user handles.

2.5.2 Wearable Sensors
In sensing modality, ReachMedia by Feldman et al. and daily activities detection kits
developed by Kim et al. and Berlin et al., and Mobile Sensing Platform by Choudhury
et al. bear similarity to OnObject for utilizing RFID and accelerometer to detect user
actions [4, 13, 2, 45]. A ReachMedia user retrieves information services associated
with an object at hand by navigating a hierarchical menu with motion gestures and
listening to audio feedback. Kim's toolkit aims to classify activities of daily living using
wireless triaxial accelerometers and a glove-embedded RFID reader. Similarly, Berlin et
al. developed a prototype that senses user interaction data for several days, focusing
on optimizing RFID antenna's reading range, data logging methods, and long-term
deployments.

ReachMedia's hardware is based on MITes wireless sensor platform [67]. Its open
source successor Wockets [31] uses decision tree classifier on featurized accelerometer
data to recognize daily activities such as walking up the stairs or brushing teeth.
OnObject's local gesture recognizer uses a feature set based on Wockets.

2.5.3 Multimodal Sensing as a
Creative Platform
OnObject, however, differentiates itself from for its primary function: it serves as
a platform for users to convert physical objects to gestural interface and configure
them, while Kim's and Berlin's toolkits are designed to track days-long routine activity
recognition, and ReachMedia focuses on retrieving personalized information from
objects. OnObject suggests a novel use of the sensing modalities, for end users to attach
interactivity to their surroundings and express themselves as well.

2.6 Gesture Object
Interface

2.6.1 Vaucelle's Dolls
Tagged objects used in OnObject applications act as Gesture Object Interfaces based
on Vaucelle's definition involving "gesture recognition during object manipulation
[23]." Vaucelle's Picture This! system introduces camera- and accelerometer-equipped
dolls children use as actors in the video narrative they construct. Children also use
predefined shaking and tilting gestures with the dolls in hand to perform basic video
recording and playback tasks. The dolls in this case are actors in the scene that are
gesture-animated in user's hands, but are also used as controllers for movie creation
tasks. Similarly, tagged objects like the folding fan, a lump of clay or stuffed animals co-
opted in OnObject become Gesture Object Interfaces once a tag is applied.

2.6.2 Rapid Creation of
Gesture Object
Creating Gesture Object Interfaces take working knowledge in hardware, programming
and fabrication. Using OnObject, however, designers and casual users can quickly
create them by tagging any number of objects. Additionally, users can conceive and
create never-before-seen Gesture Object Interfaces from blocks or clay and put them in
action, taking advantage of the iterative rapid prototyping process.

Figure 11 Picture This!: Dolls are equipped with accelerometer and camera.

Figure 12 Picture This!: Using gesture commands, movies are recorded from the character's perspectives.

2.7 Form-and
Interactivity-Giving
Tools

2.7.1 Toolkits and Constructive
Assemblies
Many toolkits have been developed in recent years for creating interactive artifacts
for prototyping, education, and entertainment. These include d.tools, Arduino, and
reacTable [7, 1, 11]. Some assembly tools attempt to give both form and interactivity.
Two recent examples are Topobo, a 3D constructive assembly system with the ability to
record and playback physical motion, and Senspectra, an augmented physical modeling
tool for sensing and visualizing structural strain [19, 14].

2.7.1 Casting Interface from

Anything
The primary differentiation and contributions of OnObject lie in the appropriation
aspects of the system. Instead of providing a set of construction pieces, OnObject is
founded on the belief that users are the resident expert of their own surroundings,
similar to what Dey et al. argue in a CAPpella [3]. With OnObject, the user gains the
ability to both quickly create motion sensing interface with any situated object, and to

create new forms of interactive artifacts by adding tags in sculpted or on assembled
objects. Figure 13 shows how one can use existing objects such as a pen or coffee mug,
or construct their own gesture object interface from blocks or clay.

Figure 13 Tagging an existing objects (top) vs. creating a makeshift gestural object from blocks (bottom).

2.8 Pervasive Tracking
and Gaming

2.8.1 Appropriation through
Attachment
OnObject's primary function of attaching interactivity to existing physical objects
shares inspiration with Control Freaks, a clamp-shaped motion sensing device
that clamps to everyday objects to turn them into game controllers (Figure 7), and
its integration with Exemplar to design custom gestures [26]. OnObject adds two
contributions to this line of "appropriation through attachment" approach:

- The ability to use the identity of the "host object," the physical object where sensor
is attached, to produce different outcome for the same motion input. In OnObject's
case, the tag is not sensor in itself, but a physical link to the sensor in user's hand.

- The ability for end users and developers to determine the outcome and design their
own game using the device, on-screen tool or configuration text file.

2.8.2 Augmented Objects
Amagatana + Fula features a sensor-augmented umbrella that user can handle like
a sword for dramatic audio output [12]. While its focus of adding interactivity to a
mundane object relates to OnObject, Amagatana is rather similar to existing TUI objects
like I/0 Brush as the umbrella is significantly modified to house the sensing device. With
OnObject, a game designer can sense the swinging of an umbrella by simply attaching
a small tag to an existing umbrella without adding a device or battery, leaving the
umbrella still usable for its original purpose.

2.8.3 Motion Tracking
for Augmented
Environments

Other projects have explored motion tracking assuming an intelligent environment. Both
XWand and Wiimote are wireless UI devices that enable styles of natural interaction in
intelligent environments equipped with sensing capabilities [25, 46].

OnObject is a programming platform to transform mundane environments to interactive
ones. Instead of using an arbitrary controller object, OnObject facilitates using real
world objects as gestural interfaces. While it does not provide location tracking,
OnObject offers a low-overhead, low-commitment method to appropriate situated
objects for interactive applications one by one.

Compared to G-Speak or Microsoft's Project Natal that track empty-handed gestures,
OnObject takes a more structured, grammatical approach. Application events are
contingent on the semantics of the user actions that consist of the physical artifact user
is handling (the object) and user's motion (the verb). As the sensing is located at the
point of contact, users are led to focus on the embodied manipulation of objects and
physical engagement, instead of worrying about whether they are "seen" correctly by
the external machine (Figure 14).

Figure 14 G-Speak's locus of interaction is external to the body space, where user stays aware of their
visibility to the machine vision (left); OnObject users are led to focus on the contact point between their

body and the physical environment - their hand (right).

2.9 0Programming by
Demonstration

2.9.12..1 Mapping by
Demonstration

Hartmann et al. point out programming by demonstration in ubiquitous computing has
been explored in many projects including a CAPpella and Exemplar [3,6]. Both projects
specifically feature pattern recognition by demonstration, to aid users in building a
custom pattern recognizer. Unfortunately, building the recognizer is only a small part of
the programming and development process, and users are still exposed to many low-
level tasks.

In OnObject's case, demonstrations are used throughout the programming process, for
selection of particular gesture triggers during both programming and usage. First, the
user literally maps her augmented hand to a particular object by grabbing it. Second, as
OnObject provides a recognizer with a predefined set of gestures, Media I/O users can
configure the mapping by demonstrating the trigger gesture of their choice among the
provided set.

2.9.2 Rapid Creation of

Applications
Comparing a CAPpella, Exemplar, and OnObject in terms of required user engagement
and skills in the workflow reveals the different focus each tool has (Table 2). As a
prototyping tool, OnObject focuses on easy application creation by novice end users

given a set of gesture vocabulary, rather than converting flexible set of sensor input into
custom input vocabulary. As a CAPpella and Exemplar users choose and setup the input
sensing devices, create custom recognizers and then develop hardware or software
applications, these tools invite users who wish to be engaged in the end-to-end design
and prototyping of sensor-based interaction. In comparison, OnObject caters to a wider
range of casual end users who want to quickly create mapping between a combination
and series of pre-defined events on a wide set of objects, test and modify the in
minutes.

Table 2
Comparison
inspired by
Hartmann's
"Designing sensor-
based interactions"
[6]

a CAPpella Exemplar

TYPICAL USER

USER GOAL

ASSUMED USER
KNOWLEDGE

INPUT MODALITY

End user: Meeting-
attending information
worker

Product and
interaction des
hobbyist

Control my Iteratively desi
environment and sensor-based
devices based on my interaction
activities

GUI movie editing, JAVA, Phidgets or
instrumenting a phone Arduino

OnObject
Casual end user:

igner, Parents and preschool
children

gn Turn situated objects
into gestural audio
interface

None, basic GUI
to map additional
responses

User modifies phone, User creates input Attach a tag to an
lighting devices and devices and connects object, wear device,
computer software it to Exemplar running connect the device to
and connects them on the computer the computer
to a CAPpella on the
computer

INPUPT PATTERN
RECOGNITION

User creates
recognizer from
provided GUI

User creates pattern
recognizer using
provided GUI

Gesture recognizer is
built-in

MAPPING BETW

THE PATTERN A

OUTPUT RESPO

APPLICATIONS

TRAINING THE

RECOGNIZER

RECOGNITION

ACCURACY

EEN User annotates input User maps to OS-wide User records sound
ND pattern and output keystroke or mouse response into device
NSE pattern on provided events using provided after performing

GUI GUI gesture trigger

Actions on devices and User creates output User specifies with
hardware connected hardware/software provided GUI
to a CAPpella application

Days to weeks after Set of train samples Recognizer is built in
the annotation are recorded by users advance with training

prior to mapping samples and provided

50-93% Unknown 90-100%

Chapter 3

System
and Us

Design
Br

Experience

Combining the mobility of a hand-worn device, the

reliability of a fixed gesture palette, the scalability of

electronic tagging, and the clarity of the Tag-Gesture-

Response flow, OnObject is able to provide a simple yet

engaging method for end users to turn situated physical

objects into a gesture interface.

hift gesture
s, with RFID tags
and black dots)
ed.

\/oWp 4
TON

....................10NAAAMORM

3.1 Form Factors and
Affordances

3.1.1 T g
Tags

The RFID tags used for OnObject come in various sizes and shapes, 9-20+mm in
diameter, 0.8-2mm thick, and in various colors including white, black and transparent.

Due to their small and slim form factor, the tags allow for many novel uses:

e Multiple tags on one object: Each part of the object can be programmed separately
to behave differently. (Figure 17-1)

e Augmenting transparent and fragile objects: Even glass objects can be augmented
with no modification and minimal visual interference. (Figure 17-2)

* Objects created with tags: Moldable objects can be created with tags embedded
(Figure 17-3)

e Body as a gestural interface: Washable tags can be embedded into garments to
control digital media with bodily contacts (Figure 17-4).

Figure 16 Variety of OnObject-compatible RFID tags, compared to a U.S. quarter coin.

Figure 17
Novel uses of small
and slim tags.

47

Bare Device with Off-the-
shelf Components
Most applications presented in this research use hand-worn devices approximately 40
x 40 x 25mm in dimensions. The RFID sensing is done through the reader's antenna
located on user's palm, while the rest of the device sits on top of the user's hand.

Figure 18 Device form factor.

Some of the devices use an internal antenna embedded in the RFID reader; others
employ a custom-designed external antenna with 38-44mm diameter, cast in a 52mm-
diameter silicone disc. When tags come within the antenna area, the 16-byte tag ID is
detected by the reader.

Figure 19 Internal antenna (left), external antenna (right).

3.1.2

..............11 -

The devices are composed of an RFID reader, a tri-axis accelerometer, an Arduino
microcontroller board, three indicator lights, and a pushbutton. A microphone was
added to enable sound recording for response.

RFID reader

Microcontroller

Accelerometer

Indicator LEDs

Button

Figure 20 Anatomy of an OnObject device.

Communication with a
Nearby Computer

Most devices use serial-to-usb cable to receive power from the compter and transfer
data to and from the computer. A wireless version of the device transfers the data to
and from the computer via Bluetooth serial port. The wired version has been mostly
used due to its reliability and convenient power management.

3.1.3

.....

3.1.40 Ring with Custom PCBs
We have been avoiding the glove form factor because gloves are strongly associated
with immersive tracking and virtual reality applications, and completely enclosing
user's hand may contradict the low-commitment, exploratory appropriation of
graspable objects. In fact, the components of the device can be further compacted into
a set of printed circuit boards (PCBs) in an oversized ring form (Figure 21). The PCBs
and overall shape of the ring device have been designed, and has yet to be assembled
and programmed with the firmware.

LEDs Button
2.54mm tall header

15mm tall

LED board: 30mm diameter. 4.1mm thick including parts

Micro USB (side): 5 x 2.8mm high
Arduino/BT/accel board: 33mm diameter. Sm. thick

Battery: 33mm diameter, Smm thick

8 degrees

4 wires connect Arduino PCB and RFID reader

RFID reader: 25.6mm diameter. 2.8mm thick

Figure 21 Prototype of a ring-shaped device with custom PCBs.

.............

3.1.5

Figure 22 Garment-embedded application in development.

Garment-embedded
The current device components can also be rearranged and integrated with wearable
garments. For example, a bathrobe or tracksuit can be equipped with an OnObject
device so that the wearer can record sound into different parts of her body, and play
sound effects, music, even her own voice when she massages her body or exercises
(Figure 22).

& reads the tag;.

h indrop ta

n> erted

1 unI tag

cli ,e tedti~

a n r 1

hy I th

3.1.6

Figure 23 Persistence of vision effect with the bottom LED when user makes a circling motion.

Controls and Feedback
Indicator LEDs
Currently three LEDs are located on the top side of the device to indicate when a tag
is detected (top, Figure 24-2), button is pressed (middle, Figure 24-3), and a gesture
segment is detected (bottom). With motion gestures where the hand is moving fast,
users can see a bright trace of their motion as shown in Figure 23.

Button
The device is equipped with a pushbutton used for sound recording. Currently the same
button is used to trigger copying and pasting in some applications, and the conflict can
be resolved by either adding another control (another button for copy-paste) or adding
another type of button press event (double-press, long and short press).

.................... - 1 "I'll", --..- -,..-- 11 --..-- -,--,

Figure 24-1
LEDs are not on
when idle.

Figure 24-2
Top LED is on when
a tag is detected.

Figure 24-3
Middle LED is on
when user presses
the button.

53

Out-of-Box
Experience

As an entry point to the user experience, the OnObject platform provides an "out-of-
box" experience of interacting with a tagged object without writing a single line of code
or performing a single mouse click.

For example, consider the water glass shown in Figure 25. It is particularly difficult to
embed sensors in a transparent object like this glass. However with OnObject, user can
add interactivity to this glass immediately by simply attaching a tag to the glass and
then grabbing it. When the reader recognizes the tag, a subtle chime plays.

Figure 25 First user experience.

For each new tag, OnObject plays the default sound response: chime when grabbed,
and boink when shaken. System-provided default values constitute a shortcut, and can
help novice users learn the system [16]. This design helps users verify the system is
functioning and enjoy immediate interactivity without a laborious setup or learning
process.

3.2

Tag-Gesture-
Response Flow

OnObject's goal is to make gesture and application design as easy as tagging an object,
making a gesture, and specifying a response. Upon learning the premise of the system
through the out-of-box experience, the user can start configuring each tag, following the
Tag-Gesture-Response (TGR) flow.

3.3.1 Programming Sequence
Tag
An application can consist of many tagged objects, and a user can add a new tagged
object to the application at any time by attaching an RFID tag to a physical object.

Gesture
With object grabbed by the tag, the user demonstrates one of the trigger gestures and
default sound feedback plays. By demonstrating the gesture, user can remember how it
feels for later repetition.

Response
The user holds the button down, records sound response to the gesture by speaking into
the microphone, and releases the button.

When the user performs the gesture from then on, the recorded sound plays. The
mapping between the tag, gesture, and response is application specific - the same grab
gestures on the tag can trigger different responses depending on the application.

See Section 5.3.1 for a typical example of this flow.

3.3.2 Simplifying Assumptions
As with any intelligent interface, Tag-Gesture-Response is a tradeoff between system
flexibility, recognition accuracy, and burden on the application designer, who is also the
end user in the case of OnObject. We aim to minimize the burden on the user without
sacrificing system performance by making simplifying assumptions concerning the
system's expressiveness.

Fixed Gesture Palette
First, we assume a fixed palette of gestures. Although OnObject's underlying recognition
engine learns from a set of training examples, adding training to an end-user
application introduces complexity to the system: to the user interface, to the user's
mental model, and to actually coaxing the system into constructing a highly accurate,
usable recognizer. For instance, a CAPpella, a system for creating user-defined pattern
recognizers, reports 50-93% accuracy, while uWave achieved 93.5% accuracy on a pre-
defined gesture set with user-dependent accelerometer input [3,15].

OnObject's bundled gesture set includes grabbing and releasing a tag, shake, tilt,
circle, swing, thrust, fan, and idle non-gesture motion or "background noise" (Fig
26). Separation and joining of two tags can also be added to the set depending on
the firmware of the RFID reader. The gestures were selected based on their broad
applicability (shake, tilt, grab) and desired applications (swing, thrust).

Because we collected a training set with 100 or more samples per gesture, the
recognizer achieves 94-97% accuracy. While the gesture palette can be replaced,
modified, or extended by developers to adapt it to a new application domain, it is
important to the OnObject design, given the state of the art in gesture recognition, that
the end user is given a fixed palette.

grab release idle tilt shake

swing thrust circle fan

Figure 26 Current gesture palette.

Tag Extensibility
While a fixed gesture palette affords high accuracy recognition, it limits the number
of actions that can be performed by a single object. However, programming physical
objects does not require significant modification other than attaching an RFID tag via
glue, tape, or clips. This makes the number objects in the system arbitrarily extensible,
allows for experimental appropriation of our physical surroundings, and makes the
system widely applicable despite a fixed gesture set.

Interpreted Gestures
Moreover, by adding new tags either on separate objects or on different parts of the
same object, users can contextualize the same gesture in multiple ways. The shake

::. : :, , zzzzzzzzzzzzzzzzzzzzzzz , t - ,

gesture for example, can be perceived as hopping when performed on a stuffed
kangaroo, crashing of a toy car, or clapping on the opposite hand. Tilt can mean closing
of a book when performed on the back cover, or looking for a bookmark when applied to
the spine of the same book.

Constrained Recognition
In fact, the tag modality can be a powerful way to complement the recognizer. By
constraining the set of gesture alternatives for any given tag, we can perform an easier
recognition problem, which we call constrained recognition, and which can signfiicantly
reduce the recognition errors depending on the configuration. For example, when there
is only one active gesture, constrained recognition reduces the N-class recognition
problem to a 2-class (idle vs. active gesture) problem.

Contingent Accuracy
The final assumption that helps the Tag-Gesture-Response flow is the notion of
contingent accuracy. The primary user-centric criteria for gesture design are the
application behavior and the physical affordances of the tagged object. However, as
recognition accuracy decreases, the user experience degrades accordingly. Contingent
accuracy allows end-users to easily incorporate recognition accuracy into their
gesture design without having to understand the details of the underlying recognition
technology.

Because the system contains a fixed set of gestures, but only a subset of these gestures
will be active for any given tag, it is possible to precompute the expected recognizer
accuracy with any active subset of gestures. Using these precomputed values, we can
visualize the impact of the user adding a gesture to a tag before it has been added, and
integrate this visualization into the programming flow.

This is illustrated above in the Media I/0 scenario (Figure 27-2), in which gestures are
color-coded according to contingent accuracy. Gestures with high contingent accuracy
given the currently active gesture set of a tag are shown to be "easy" and highlighted in
green. Gestures with medium and low contingent accuracy are shown to be "medium"
and "hard" and highlighted in yellow and orange, respectively. The visualization is
simple for users to understand and react to. For example, a user might employ a tag
extensibility to exploit the accuracy benefits of constrained recognition if the current
tag is becoming too crowded with gestures.

Creating OnObject
0Applications

OnObject provides three ways to support end user programming of
physical objects:

e Device only: Screen-free mapping of gestural trigger and audio feedback by
recording sound directly into the device, often user's voice. Created for novice users
including preschool children to achieve simple programming within 30 seconds.

e Media I/0: On-screen toot to map gestural trigger to audio, visual, video, and Web
browser events with more playback options. Designed for common computer users
to create media playback applications within 5 minutes.

e KeyMapper: Configuration text file user edits to control other programs on the
computer that takes keyboard events. Created for artists, prototypers and hobbyists
to create customized gestural applications that work with a wide variety of existing
software (PowerPoint, TextEdit, iTunes, etc.) or user-developed software (developed
with Flash, Processing, MaxMSP, Python, etc.)

3.4.1 Device Only
For a primary set applications, the programming is done using only the hand-worn
device equipped with a button and a microphone in the following series of steps:

Tag: User attaches an RFID tag to a physical object.

Gesture: With object grabbed by the tag, user demonstrates one of the trigger gestures;
default sound feedback plays.

Response: User holds the button down, records sound response to the gesture by
speaking into the microphone, and releases the button.

Play: When user performs the gesture from then on, the recorded sound plays.

3.4.2 Media I/0

For other applications, the programming is done using the device and Media I/0, an on-
screen GUI tool. To make a tilt gesture on a glass trigger a water sound to play, user can
take the following steps:

Initiate Programming: The user attaches a tag and grabs the glass. An LED on the
hardware device lights up, and a chime sound plays to verify that the tag's been
registered. The new tag appears on screen, with the default trigger gesture ("grab") and
response ("chime").

Change Gesture: When the user presses the button on the device, a list of gesture
triggers are displayed, color-coded by contingent accuracy as described in Section
3.3.2 (Fig 27-2). This serves as a guide to help the user choose appropriate gestures, in
addition to the physical affordances of the object itself. When user demonstrates the
"tilt" gesture, the gesture trigger is updated.

Change Response: At this point, the user can release the glass and use the mouse. She
picks the type of output (sound, image, video, or webpage) and a particular instance
("water") pre-included in Media I/O (Fig 27-4). She picks whether to trigger the
response on start or end of a gesture, and whether or not to repeat the response with
long-running gestures.

Figure 27-1
Media I/O screen u 9
when user first
grabs a new tagged

object.

.............

Figure 27-2
User changes
gesture trigger by
demonstration.

Change gesture trigger

Easy

Medium

Hard
grab

join

Figure 27-3
Media I/0 screen
with a new gesture
trigger.

Figure 27-4
Response is
changed on screen.

*4
Current programming

Current Response

Sound

F1 Image

D Video

Webpage

Boink

Select a File

release tiltidle

@0

separate swing thrust

Chime

Water

Sword

On Start

[] On End

LJRepeat

Kial

KeyMapper
Alternatively, the above programming could be done by editing a configuration text file
where each tag, gesture ID is mapped to an operating system-wide keystroke events, so
that a large number of software applications can interact with physical objects.

For instance, to play dramatic swordplay sounds wih a folding fan, user would tag
the fan, and edit a configuration text file that lists each tag, gestures, and resulting
keystroke to be sent system-wide. An Adobe Flash file listens to keystroke events and
plays appropriate sound or movie files, while an underlying Python program takes care
of serial connection, gesture recognition, and send keystroke events.

The configuration text file may look like the following:

fan tail tag

[e00401003da52d99]

grab:g

thrust:t

swing:s

no tag: empty-handed gestures

[0000000000000000]

thrust:t

swing:s

special:p

The Flash Actionscript then takes each keystroke event and plays appropriate
audiovisual elements. Using KeyMapper, existing TUIs like Amagatana + Fula can be
quickly prototyped. See Section 5.1.2. for a partial reconstruction of the Amagatana
application.

-4-* Advanced API
Specialty applications like video game titles can be developed to interface with
OnObject and take gesture events on everyday objects. For example, swinging a Sharpie
pen can be taken as a sword swing, and shaking it can be interpreted by the game as
charging the weapon; when user grabs her other arm by a tag, the game could be frozen.
In case of these specialized applications or solutions, developers can use the following
information to develop applications and games that incorporate situated objects and
body gestures:

- Current and previous tag IDs

- Current and gesture IDs, local (segmented) and global (statistically adjusted)

- Number of consecutive tag IDs

- Number of consecutive gesture IDs

- Button state

- Tag presence during a gesture

- Elapsed time during a tag presence

- Elapsed time between gestures

Chapter 4

Implementation

OnObject's implementation is as a loosely-coupled
service which provides streaming gesture events

to applications, and a RESTfu[API to query and set

configuration state. The platform consists of the

hardware device and gesture recognizer, which are

described in more detail below, as well as an embedded

lightweight HTTP server for adjusting configuration

state (Figure 28). Each element of the architecture is

explained in more detail in the following sections.

Figure 28
OnObject system
architecture.

Platform

Hadwr

Deic

Tag ID

X acel

Y accel

Z accel

Button
pressed

Tag specific
gesture

recognized

x, Y, Z

Gesture ID
(

Sere

Gesture Event
Tag ID, Gesture ID, Button

Tools & Apps

MeiUl0

Serial Communication

RESTful API
App-specific tag and gesture list

Key event

Ex Ist Ing

Applicationls

Uustom
ApplIca-)tIon Is

Python Library

Socket Server HTTP Server

Gesture
Re cognizerU yhn

'::- 11 - - - - , - - I - ---- -- I-- - -- -- - - -- - - 9 - -, -

OS Event

Implementation
Strategy
Throughout this research, the goal has been to demonstrate the possibility of simple
yet structured "programming" of the physical world by end users. Therefore, the
implementation effort is focused on the architecture of the OnObject platform for
application creators, a broad definition that includes preschool children, their parents,
hobbyists, interaction designer and game developers.

For a TUI developer, the OnObject device itself is relatively easy to produce. Instead of
investing much time in the engineering of the device, more substantial work was spent
in three areas:

Fixed Gesture Set
Getting a small yet rich enough set of gestures to work reliably as a part of the
programming language.

End User Programming Tools
Supporting three high-priority user groups. 1) Completely screen-free and device-only
programming for improvisation by children and laypersons; 2) The ability for more end
users to incorporate existing media content using on-screen tool; and 3) Propagating
keyboard events for very broad applicability for hobbyists and prototypers to control
existing and custom software programs.

System Architecture
Design and development of one API to enable all three tools.

4.2 Hardware
The OnObject device consists of a 3-axis accelerometer, a high-frequency RFID reader, 3
LEDs, a button, and a microprocessor which interfaces with each of these and with the
USB serial port on the host computer. See Section 3.1.2 for pictures of the device.

4.2.2 Components
Accelerometer

OnObject uses the Freescale MMA7260 tri-axis accelerometer, sampled at
approximately 20Hz, and configured at the "4g" setting to reduce saturation for high-
energy motions like shake and thrust.

RFID Tags

OnObject currently employs high-frequency (13.56MHz) RFID tags with IS015693
protocols, which are as compact as 9mm diameter x 2mm thick (disk) or 13 x 13 x
0.8mm (sticker). As these passive tags are inexpensive and do not require electrical
power, repairs, or upgrades, the tags are easily applicable to existing household objects
and surfaces, and even to garments that can be washed.

Tag Reader

We used Tagsense Micro-1356 and Skyetek M1 Mini readers for current prototypes. The
RFID antenna (23-38mm diameter) is significantly smaller than ReachMedia (wrist-
sized) or Berlin's toolkit (110x75mm) [4, 2] and is located on the user's palm by default.
Powered with 3.3-5V, the maximum reading distance is 12-33mm respectively when
reading a 15mm-diameter tag. The small sensing area, distance, and compact form
factor makes it conducive to detecting objects held firmly in hand or near grasp.

Indicator LEDs and Programming Button
Each device includes three LEDs for feedback when an object is first grabbed, the
"program" button is pressed, and when it detects a certain level of overall motion. It
is also available for application-specific feedback. The button is an unambiguous UI
element for initiating the TGR flow described earlier.

Microprocessor
The current hardware is built on the popular Arduino platform using a ATMEGA328
processor. The Arduino program communicates with the recognizer via the serial port.

4.2.3 Antenna Design
An external antenna can be employed to increase sensing area or to specifically sense
objects the user's finger touches. We developed custom antennae for the Tagsense RFID
reader. Most antennae measure 38-46mm in diameter, contain two loops of multi-strand
22 AWG wires to form the inductor, and are connected to 270-285pF capacitors in series
to record approximiate 13.56MHz resonance frequency. When directly connected to the
reader and the computer, these antennae recorded a maximum reading area of 50mm W
x 60mm D x 33mm H. (Figure 29).

Antennae can be in different sizes and form factors. For instance, a fingertip-size
antenna with 593pF capacitors, made with three 18mm diameter loops of wire,
measured 17mm reading distance at the resonance frequency of 13.7MHz (Figure 30).
See Appendix A for the hardware connection diagram, including how an antenna is
connected to the Tagsense reader.

Figure 29 Handmade antennae for Tagsense reader (top), testing the reading range (bottom).

5 - 10

Figure 30 Fingertip antenna.

69

.......

49 Software
4.3.1 Device Firmware

Written for the Arduino platform, the code performs the following tasks:

- Continuously send current tag ID (16-byte Os during absence) and x, y, z
acceleration values to the gesture server via serial communicaiton.

- Control indicator LEDs based on tag presence, button press, and gesture activity
received from the gesture server.

See Appendix B for the firmware code.

4.3.2 Gesture Server
Gesture Events
Gesture events are emitted from the server over a TCP socket interface. Applications
can connect directly to the socket to receive a stream of events. Alternatively, the
KeyMapper can sit between the socket and an application and flexibly encode gesture
events into system keyboard events. This creates a loose coupling between the tool/
application and the recognizer, so the application will only receive events when it has
system focus. It is simple, makes OnObject compatible with most existing applications,
makes it easy to interface new applications with the system, and is performant.

Configuration

OnObject's configuration is a mapping from tag IDs to valid gesture events. This
information is stored in a configuration file that can be hand-edited, but to create
the TGR flow we use in our tools, we also provide full application access to the
configuration using a RESTful HTTP interface. The interface allows clients to view the

current configuration, view the entire set of known gestures, retrieve the contingent
accuracy of any subset of gestures, update the tag to gesture to event mapping, and
persist the mapping to file.

4.3.3 Gesture Recognizer
OnObject's recognizer is a layered adaptation of two existing approaches. A local
recognizer estimates the current gesture on a rolling, fixed-size window of the input
signal by applying a learned Decision Tree to a set of 29 features. At the global level, it
feeds the output of the decision tree into a learned Hidden Markov Model (HMM), which
considers the current window in context. By dynamically adapting the HMM based on
the current object in the user's grasp, OnObject is able to constrain the recognition
problem and considerably boost accuracy.

Recognizer Design
The recognizer is designed with several key design criteria in mind. It is extensible
to support a variety of gestures through learned models. It is accurate, with high
precision and recall, despite noisy accelerometer input data. Decision Tree and HMM
learning are simple, well understood by practitioners, nearly ubiquitously available,
and fast. Therefore the OnObject recognizer is simple, easy to understand, and easy
to reimplement on any platform, including low-cost embedded hardware, and in any
programming language. Finally, it can easily adapt to the current object in the user's
grasp, implementing the constrained recognition aspect of the TGR flow, without having
to retrain the system.

Input Stream Windows Windows

[[p
Estimtor ~~ ~ Recognizer

Rolling Windows Local Estimate Global Result

Figure 31 Layered recognizer design.

............... ::_ - ::::::::::::::_ . .1

Table 3
Features used in
local estimator

Local Estimator
OnObect's local estimator is a [earned Decision Tree that is applied to a fixed-size
window of input samples. For each window in the input data, we extract a collection of
29 signal features as shown in Table 3. These features are borrowed from the Wockets
system, a superset of Kim's feature set [31, 13]. We train the local estimator using
Weka's J48 decision tree learner [5].

INDEX DESCRIPTION

1- 4 Sum of axis means, pairwise difference in axis means

5-7 Variance of each axis

8 - 10 Range of each axis

11- 22 FFT top K frequency/magnitude pair for each axis (K=2)

23 - 25 Power of each axis

26 - 29 Pairwise signal cross correlation between axes

Global Recognizer
The global recognizer in the system is a Hidden Markov Model [10], with a simple
modification to support constrained recognition based on the modality of the
application. The outputs of the local estimator are fed to the HMM. The HMM converts
these output into a class probability, and then smoothes these outputs, by encoding
the typical transition probabilities (a gesture typically lasts for 6-10 windows before it
transitions to idle or another gesture).

We encode constraints in the system by dynamically updating the emission and
transition matrices in the HMM so that inactive gestures map to the "idle" state. This
is a crude way to achieve a global constraint on the HMM, similar in spirit to the more
fine-grained constraints described in CueTIP [22]. Because an HMM is implemented as
a pair of emission and transition probability tables based on frequencies, updating the
HMM to implement a constraint is as simple as moving counts between the appropriate
entries in the table. This can be done efficiently without introducing overhead to the
system as the user grabs and releases tags.

Figure 32
Global recognizer
(last column)
corrects erroneous
local estimator
result (red).

X accel
data
300.000
300.000
304.000

300.000
296.000
304.000

304.000

304.000

300.000
304.000

288.000
292.000
324.000

204.000

260.000
460.000

376.000
672.000
36.000
0.000

668.000
384.000

308.000
320.000
276.000
292.000

320.000
292.000
308.000
292.000
296.000
308.000
304.000

300.000
300.000
296.000
304.000

300.000
300.000
296.000
296.000
308.000
304.000
288.000

300.000
300.000

296.000

300.000
308.000
300.000
300.000

Y accel
data
296.000
296.000
296.000
296.000
296.000
296.000
304.000

288.000
296.000
284.000

264.000

220.000

164.000

176.000
204.000

180.000
268.000
448.000

688.000
192.000
400.000

324.000

288.000
296.000

284.000

296.000
284.000

292.000
284.000

292.000
284.000

288.000
292.000
284.000

284.000

296.000
284.000

288.000
296.000
284.000
288.000
292.000
292.000
296.000
300.000
292.000
300.000

304.000

284.000

292.000
280.000

Z accel
data
384.000
388.000
384.000

388.000
384.000

388.000
396.000
372.000

388.000
384.000

380.000
376.000
356.000
356.000
364.000

336.000
340.000

216.000
692.000
144.000

348.000

360.000
372.000
388.000
348.000

420.000

392.000
380.000
376.000
392.000
380.000
384.000

388.000
376.000
376.000
396.000
376.000
380.000
392.000
372.000
376.000
388.000
376.000
384.000

396.000
388.000

396.000

404.000

380.000
392.000
376.000

none ---- ----

none ---- ----

none

none ---- Roling windows ofnone ---- ---- RligidW~

none ---- ---- 20 data points are
none pattern-matched
none ---- ---- every 4 points.

none ---- ----

none ---- ----

...

Evaluation
We trained and evaluated the OnObject recognizer on a data set containing 400 of each
gesture, and 2400 idle gestures [Table 4]. We found that the recognizer was sensitive
to both the user who generated the set of gestures, as one would expect, but that with
hundreds of examples from each user the learner was able to generalize. We wanted to
understand the performance of the local estimator versus the global recognizer. Given
an accurate local recognizer, it is possible to build more complex global recognizers,
such as Conditional Random Fields (CRFs) or Probabilistic Context Free Grammars
(PCFGs) [10].

Because nearly 30% of the errors are between active gestures, as opposed to
between active gestures and the idle state background model, constraining the
recognition allows us to not only eliminate those errors completely, but also turn local
improvements into more pronounced global improvements.

Table 4
Within-subject
evaluation results.

Local Estimator
GESTURE N

PRECISION RECALL Accu

Global Recognizer

racy PRECISION RECALL AccurEacy

Circle 400 0.93 0.90 0.99 0.98 0.98

Swing 400 0.82 0.85 0.97 0.93 0.94

Thrust 400 o.81 0.97 0.98 0.89 0.99

Shake 400 0.80 0.96 0.98 0.90 0.99

Fan 400 0.77 0.74 0.96 0.86 0.85

Tilt 400 0.80 0.82 0.97 0.90 0.90

Idle 2400 0.93 0.88 0.91 0.96 0.88

Total 4800| 0.87

0.99

0.99

0.99

0.99

0.98

0.98

0.92

0.94

Adaptive Recognition Strategy
The gesture recognizer is a work in progress. Although the constrained HMM
performance has been tested with within-subject data, it still warrants more data and
experiments to validate its performance with a larger number of participants. However,
it is important to note that in the context of OnObject applications, the recognizer
should be primarily tested for single-user, within-session use.

74

The user studies and the live demonstrations described in Chapter 5 used an interim
solution: local results from decision tree were run through simple heuristics and
returned global results based on consecutive number of identical local results. The
recognizer returns both local and global results, and some applications make use of
both. The single shake recognizer seen in the videos was based on a heuristic that
measured cumulative power across a number of short windows.

434 Development Tools
In the course of the implementation, several software tools were created or borrowed to
develop the gesture recognizer.

Plot Real-time Tag and Acceleration
Based on Tom Igoe's work [68], a Processing sketch was created to view tag ID and
acclerometer data real time.

Figure 33 Tag and accelerometer plotter Processing sketch.

... : M .::: : 1.--.111-1 .1111111 llm -- - -------- :- - - ---------

Export Acceleration Data to CSV
To sample labeled gesture examples, the sketch was further modified to record and
export CSV data real-time based on keystroke commands. Single gesture CSV was
organized in order of label ("shake"), number of axis (3), number of data points in each
axis (36), X0 - XN' Y O - YN, and Z0 - ZN'

shake, 3, 36, 268,264,268,264,264,264,264,264,268,268,268,272,2

76,288,504,680,0,108,484,444,240,224,268,288,268,240,252,252,25

6,268,264,252,260,264,260,260,324,328,320,324,328,320,324,324,3

20,324,324,320,324,320,372,40,64,412,348,236,328,312,316,312,32

0,324,316,320,328,324,324,324,320,320,324,324,356,352,356,356,3

56,356,356,360,360,356,360,360,360,364,344,96,0,328,420,420,308

,328,360,372,364,352,352,356,356,356,352,352,352,356,356,356,3,

36,268,264,268,264,264,264,264,264,268,268,268,272,276,288,504,

680,0,108,484,444,240,224,268,288,268,240,252,252,256,268,264,2

52,260,264,260,260,324,328,320,324,328,320,324,324,320,324,324,

320,324,320,372,40,64,412,348,236,328,312,316,312,320,324,316,3

20,328,324,324,324,320,320,324,324,356,352,356,356,356,356,356,

360,360,356,360,360,360,364,344,96,0,328,420,420,308,328,360,37

2,364,352,352,356,356,356,352,352,352,356,356,356

Plot and Crop CSV Data
Once saved as a CSV file, the data can be loaded to another Processing sketch for
viewing, and can be cropped to remove extraneous parts with a mouse drag.

Figure 34 Cropping a CSV file using a Processing sketch.

.......... ...

Weka Decision Tree
Using the feature set in Table 3, a Weka ARFF file is generated for each training example
set.

@attribute
@attribute
@attribute
@attribute
@attribute
@attribute
@attribute
@attribute
@attribute
@attribute

feature19 NUMERIC
feature20 NUMERIC
feature21 NUMERIC
feature22 NUMERIC
feature23 NUMERIC
feature24 NUMERIC
feature25 NUMERIC
feature26 NUMERIC
feature27 NUMERIC
class (thrust,none,circleswing}

@data
0.331456108689,0.525953471561,0.194497362873,0.0949021693
5103067606,23.6592620254,11.1746031746, 342.021753359,10.1
9196722136,10.1587301587,244.738314766,9.14285714286,139.
-0.45436536443,-0.544980175604,-0.0906148111745,-0.835238
5463877948,15.8131046819,11.1746031746,431.711087923,10.1

Figure 35 ARFF file of sample gestures (partial view).

The ARFF file is loaded to Weka, an open source machine learning software. Using
J48 learner, Weka generates a decision tree. The decision tree is loaded in the Python
recognizer library for local estimator.

Preprocess EWSd p Cluster Associate Select attributes Visualize

Classifier

Choose J48 -C 0.2S -M 2

Test options

Use training set

Supplied test set

Cross-validation Folds 10

Percentage split

More Options...

Classifier output
Test mode: 10-fold cross-validation

- Classifier model tull training set

J46 pruned tree

featriteO- -45.98387b
teat ore 45 1.01573: swing-straight 54.0)
St ere 1 4 1 .015873

feteeelZ 2.031 7 swile-straight-thrust 5.0)
eaeatu r 2.03174> 9 sing-srle (2.0)
-'tre -45.983878: empty-testereey-circle (21.01

(Nom class Number of Leaves : 4

Start) p

Result list (right-click for options)

21 50 08 - trees.J 48
21 54 08 trees.j48
22 03 32 trees.J48
22 15 33 trees.J48
22 16 36 trees.J48
22 22 00 trees.j48
22 23 49 - trees J48
22 44 24 trees J48
22 46 35 treesj48
22 48:06 - trees.J48

Time taken to build model: 0 seconds

-- Stratified cross-validation ...
- summary .-

Correctly Classified Instances
Incorrectly Classfled Instances
Kappa statistic
rean absolute error
Root man squared error
Relative absolute error
Root relative squared error
Total iumber of Instances

. n etailed Accuracy By Class ..

TP Rate FP Rate Precision Rlcall F-Measure ROC Area Class
0.8 0.039 0.571 0.0 0.667 0.886 swing-straigt-thrust
1 0.09 0977 0.92 epty-testimnny-circle

0.929 0.033 0.941 0.929 0.954 0.961 ing-Stralqbt
Wighlqted Avg. 0.939 0.033 0. 94 9 0.9)39 0.942 0 .964

b confusion matrix ---

a b c <- classified as
4 0 1 a a swing-straight-thrust

s 0 b empty-testony-circle3 2 r sding-straighttiut

Figure 36 Generating J48 decision tree using Weka.

77

...

0.8742
0.0393
0.1886

12.4589

47.81 13
82

93.9024 1
6.0976 t

Chapter 5

ApplicationS&
Evaluation

We developed several applications to communicate and

assess the appeal and utility of OnObject to end users,
including educational and play activities applications,
video gaming applications, and prototyping applications

for product and TUI designers.

- -11,11,111,111,111,11ll""II-111,111,111,ll""Ill"Illlll",Mlli- - dm

5.1 Reconstructing
Existing TUIs
OnObject can be used to rapidly prototype an interesting and
useful subset of TUI interactions using any physical objects and
environment, without requiring custom-made artifacts with
embedded circuitry and a power source.

1 Marble Answering
Machine and
musicBottles

Through the simple Tag-Gesture-Response flow, a casual end user can use OnObject to

recreate or approximate many classic and contemporary TUIs in a matter of minutes.

Table 5 shows how TUIs can be programmed using Media I/0, such as Marble Answering

Machine (1992), musicBottles (1999), and Amagatana + Fula (2008) [9, 12, 17].

Figure 38 Marble Answering Machine (left), musicBottles (center), Amagatana + Fula (right).

Table 5
OnObject
configurations for
example TUIs.

TAG GESTURE RESPONSE

Marble Answering Machine

OPTIONS
--... -.. --.. . --.. ---... ----... .- ..- ..- ..- ..-

Ball 1 Grab Play voicemail On start, no repeat

Shake Archive voicemail On start, no repeat

musicBottles

Bottle 1 neck, Separate Play cello track On start, no repeat
bottle 1 cap

Bottle 2 body Tilt Play piano track

Bottle 3 body Shake Play cymbal

On start, no repeat

On start, repeat

Amagatana + Fula

Umbrella handle Swing Play sword sound On start, no repeat

Thrust | Play kiai sound On start, no repeat

Swing, swing, thrust Play explosive sound On start, no repeat

join and Separation of Tags
Subject to the firmware of the RFID reader, an OnObject application can be modified to
detect separation and joining of two RFID tags within a 40mm area.

OnObject Amagatana
We can use a series of multiple gestures to trigger compound effects, similar to the
original Amagatana + Fula implementation where an ordinary umbrella gave an illusion
of dramatic swordplay with sound effects. For example, a thrust followed by two swings
produces special effects such as an explosive sound, allowing richer and more dramatic

experience.

5.1.2

On-Screen Interface
This application was implemented using KeyMapper configuration file and a Flash
program that receives the keystrokes and produces appropriate sound in response (see
Section 3.4.3 for KeyMapper).

Using Media I/0, user would configure two end
the following screen mockup (see section 3.4.2

Current programming

tags using the on-screen interface like
for Media I/0):

Figure 39 Tag-Gesture-Response mapping for a dramatic swordplay performance.

User Interaction Sequence
Table 6 shows how a folding fan was used for a dramatic swordplay performance. Real-
time demonstration video is available online [63].

......................

Table 6
Dramatic swordplay
performance with a
folding fan.

.Tag
Attach RFID tags to
both ends and middle
of a folding fan.

2 G rab t'ail-....*....*.......* ...

Grab the tail end of
the fan to hear default
sound feedback
(chime).

3 Swing
With the fan grabbed
by the tail end, swing
the fan to hear sharp
sword swing sound
effect.

4l Thrust
Thrust the fan to hear
mail voice kiai ("hah!")
sound effect.

..........

Table 6 continued s Grab head
Dramatic Bach music
segment plays.

6 Swing
Sword swing sound
plays.

7 Swing
Sword swing
plays.

sound

8 Thrust
Swing+Swing+Thrust
= Special effect: A
special thunderous
sound effect plays.

.....

Required Tools
- Folding fan.

- ISO 15693 13.56MHz RFID tags.

- Adhesive tape or glue gun to attach tags to the fan.

- OnObject device with microphone, communicating with nearby computer with
speakers.

- KeyMapper configuration text file.

- Flash application with sound effect files, supporting Python software libraries.

OnObject as a Scalable TUI Prototyping Platform
This application accentuates the merits of OnObject as a gestural TUI prototyping
platform compared to the one-off construction of hardware-embedded objects.
Figure 40 compares original Amagatana umbrellas (top) with OnObject fan (bottom),
approximately in scale.

-77 LJ

Figure 40 Amagatana umbrellas (top) compared to OnObject fan (bottom).

.. - --------

Modification of Host Objects: As highlighted in red boxes, Amagatana's umbrellas
have been significantly modified to included embedded hardware, to the point that
these objects can not serve their original purpose. In contrast, OnObject fan has 9mm
diameter tags attached to it, largely retaining the object's form factor and function.
Also the modification is almost always reversible, where the tags glued or taped can be
removed without damaging the original object.

Expertise Required: It requires considerable knowledge to create the necessary
hardware, program the firmware, mount it onto the host object properly and fabricate
the housing. Even those who possess the skills have to invest weeks of time to design
and execute applications like Amagatana. End users simply do not possess such
skills or incentive to invest nearly as much time to see a simple interaction happen.
With OnObject, the hardware setup is already complete. Users only have to complete
simplified software tasks of clicking through GUI screens (with Media I/0) or modifying
a KeyMapper configuration text file and a Flash file.

Flexibility and Scalability: Even with necessary skills, creators of one-off TUIs like
Amagatana have to invest another chunk of considerable time, materials and efforts
to make changes to the interaction. For instance, what if a user decides that she wants
two more umbrellas with same effect? She would have to create new circuit boards,
assemble and program them, house and mount them again. What if she then wants to
hold the umbrella by the top instead of the handles? She would have to dismantle the
embedded hardware and carefully re-mount it at the other end, which can take hours to
weeks if it requires repairs. In contrast, using OnObject she could simply attach more
tags to more umbrellas, or move existing tags to the other end of the umbrella and she
would be finished in minutes.

5.2 Tangible Thinking
0in Product
Development
One of main virtues of TUIs is tangible thinking, where physical and
direct manipulation and bodily engagement aids in problem solving
and creativity [51]. Similarly, design and creative professionals have
emphasized the value of rapid physical prototyping of product, toy,
or scientific ideas beyond two-dimensional sketching. In his book The
Art of Innovation, IDEO's Tom Kelly encourages brainstomers "to have
materials on hand to build crude models of a concept: blocks, foam
core, tubing, duct tape, whatever might be useful. [54]"

In addition to creating gestural interfaces from any situated
objects, OnObject users can create, sculpt and prototype the objects
themselves on the spot. If you want to create an interactive musical
instrument unlike anything you can find in the house, you can
instantly prototype one using blocks, clay, or even junk and apply
RFID tags to them.

Therefore, using OnObject, professional toy and product designers or
casual users can create prototypes that are not only visual, physical,
but also interactive in minutes: a tubing snake that hisses when you
grab it, a dusting mitt that laughs when you shake it hard, a bathrobe
that plays music when you massage on the neck, and so on.

5.2.1

Figure 41 An assortment of makeshift interfaces constructed with OnObject Clay.

OnObject Clay
OnObject Clay is a prototyping application where user sculpts an ad-hoc toy using
clay, LEGO blocks, foam chunks and glue, attach tags to the prototype, perform gesture
trigger, and then record sound response into the microphone. Current version of the
Clay application can be used using only the device.

Figure 41 shows toy prototypes made with a previous version of OnObject Clay, which
let users specify a tag (labeled A-Z) and pick an audio response for a gesture using an
on-screen menu. For a detailed description of a user test session, see Section 5.4.3.

...... - _ _ -

5. Storytelling and
Entertainment
To emphasize the core aspects of user-defined object programming
and novel interactions created with OnObject, three applications
were developed and demonstrated to the Media Lab visitors and
preschool children.

5.3.1 OnObject ABC
An obvious application of the ability to record sound feedback into physical objects is
to teach children words and concepts associated with each object.

Scenario
A parent, babysitter, or sibling teaches words starting with alphabet letters M and P by
programming the letters to say their names when grabbed, and name words that begin
with the letter when shaken or swung via a programming sequence outlined below.

User Interaction Sequence
Table 7 describes how to program an M to produce "M is for" sound when grabbed,
"monkey" when shaken. A real-time demonstration video is available online [59].

Table 7
Program an M
to produce "M is
for" sound when
grabbed, "monkey"
when shaken.

1 Tag
Attach RFID tag to an
M letter.

2l Gesture
Grab the letter by the
tag wearing the device;
default sound response
(chime) plays.

3 Response
Hold button down and
say "M is for" toward
the letter; release the
button when finished.

* Gesture
Shake the letter while
grabbing it by the tag;
default sound response
(boink) plays.

........ - -------------------------- - ---- ---

...............

Table 7 continued 5 Response
Hold button down and
say "Monkey"; release
the button when
finished.

6 Play
Grab the letter to
hear "M is for"; shake
the letter to hear
"Monkey!"

* Play
Similarly, user can
make the letter P
say "P is for" when
grabbed, and "Piggy!"
when swung.

..
...

Required Tools
- Wood or cardboard alphabet letters.

- ISO 15693 13.56MHz RFID tags.

- Adhesive tape or glue gun to attach tag to the letters.

- OnObject device with microphone, communicating with nearby computer with
speakers

- Application software and supporting Python library running on the same computer.

Fast, Simple and Flexible
In the real-time demonstration video, first set of T-G-R sequence (steps 1-3) takes
4 seconds, and entire programming sequence described above (steps 1-6) takes 9
seconds.

In a matter of seconds, user has transformed a mere piece of wood to an educational
audio device - without any need for programming, wiring, or watching raw signals.
Each letter's responses to gestural triggers can be reprogrammed as user desires. For
example, a parent may start with "M is for" "Monkey" for beginner student, and progress
to more abstract words such as "Money" or "Mind."

This ABC application is a simple yet powerful example that demonstrates the simplicity
and flexibility of the OnObject system.

5.3.2 OnObject Storytelling
Taking the ABC application one step further, more conversational narrative structures
can be created based on user's gestural actions.

Scenario
Based on their routine play activities, parents create a simple narrative with child's
stuffed animals where the animals ask a child's name and incorporate her name into the
consequent parts of the story.

User Interaction Sequence
Table 8 shows how to introduce the user's name to a frog and then get introduced to
frog's friend kangaroo. Similarly, the user can introduce a tagged lion that scares the
animals when grabbed to growl "what is happening?" and invites everyone to dance
when shaken. A real-time demonstration video is available online [60].

Required Tools
- Stuffed animals or toys.

- ISO 15693 13.56MHz RFID tags.

- Adhesive tape or glue gun to attach tag to the letters.

- OnObject device with microphone, communicating with a nearby computer with
speakers.

- Application software and supporting software library running on the same
computer.

Table 8
Introduce my
name to a frog, get
introduced to frog's
friend kangaroo.

1 Tag
Attach RFID tags to
stuffed frog, kangaroo
and lion.

Gesture
Grab the frog by the
tag wearing the device;
frog says "hey I'm
froggy, what is your
name?"

3 Response
Hold button down and
say your name (e.g.
"Keywon"); release the
button when finished.

4 Gesture
Shake the frog to
hear "Hello [Keywon],
let's go play with the
kangaroo" - your name
in your voice, and the
rest in frog's voice.

..

Table 8 continued 5 Play
Grab kangaroo by the
tag to hear "hi there
froggy...

6 Play
"Hello [Keywon], jump
with me!"

7 Play
Shake the kangaroo to
hear default response
(boink) sound.

...

Table 9
Varying degrees
of structure in
recording-based
storytelling
applications.

Varying Degrees of Structure
Constructing interactive narratives with OnObject can be done in a varying degree of
premeditated structure, from hard-coded to templatized, to freeform:

STRUCTURE EXAMPLE DESCRIPTION
Hard-Coded Scripted story Requires frog and kangaroo

Frog grab: "What's your name?"
Userrecods:"Keyon"incorporate the user-recordedUser records: "Keywon"a

name with their pre-recorded
Frog shake: "This is my new friend [Keywon]" lines. Hard-coded applications
Kangaroo grab: "Hello [Keywon], jump with like this can be provided for

" common play scenarios.

Video is available online [60].

Template- Madlibs
Based Frog grab: "Tell me an animal."

User records: "Crocodile."
Frog shake: "Froggy meets a [crocodile]. Tell me
a verb."
User records: "Twist."
Frog shake: "They [twist] happily ever after."

Freeform Simple Q&A 1
Frog grab: "What's your name?"
Child records: "Keywon."
Parent: "Who loves spinach?"
Frog grab: "Keywon."

Simple Q&A 2
Frog grab: Default chime
Parent records: "What does a frog say?"
Frog shake: Default boink
Child records: "Ribbit."

Pairs up pre-recorded prompts
with user-recorded words
randomly for improvised and
comical effects. Requires the
application is aware of the
superset of tagged animal
characters and a set of pre-
recorded prompts.

Without any modifications to
the ABC application, parents
and children can enjoy simple
but engaging interactions.

Video is available online [61].

This application showcases the range of interpretation and liberty users can take to
create engaging activities using simple audio-only OnObject applications. Using only
OnObject's basic features, a parent and child can have instructive and entertaining Q&A
and simple story. With additional applications hardcoded and modified to introduce
varying degrees of structure to the narrative, users can enjoy scripted or improvise
stories.

5.3.3 OnObject Swordplay
Given further development to make OnObject compatible with video game platforms,
gesture triggers can be mapped to other responses including in-game actions instead of
simple audio responses.

Scenario
Video game players can now use any graspable everyday objects as in-game tools,
creating personalized game controllers instead of relying on one remote controllers.

User Interaction Sequence
Copy-Paste (Table 10): Play videogame with a toy sword and a Sharpie pen.

Add a Modifier (Table 11): Make the Sharpie pen into a glowing sword in-game.

Real-time demonstration video is available online [62].

Required Tools
- Everyday objects.

- ISO 15693 13.56MHz RFID tags.

- Adhesive tape or glue gun to attach tag to the letters.

- OnObject device with microphone, communicating with nearby computer with
speakers.

- Videogame platform with OnObject API (see section 3.4.4).

Table 10
Copy-Paste: Play
videogame with
a toy sword and a
Sharpie pen.

f Tag
Attach RFID tags to
a toy sword and a
Sharpie pen. Toy sword
has been registered to
be used as an in-game
weapon (see section
3.4.4 on application
programming
interface).

S*Py
Swing and thrust
gestures on the toy
sword is mapped to
in-game swordfighting
actions.

3 Copy.
Press button while
holding the sword
by the tag to hear
a "sword copied"
message.

4 Paste
Grab the Sharpie pen
(or any tagged object)
by the tag and press
the button to hear
"sword pasted."

.

.......

Table 10 continued

Table 11
Add a Modifier:
Make the Sharpie
pen into a glowing
sword in-game.

5 Play
Swing and thrust
gestures on the pen is
mapped to the same
in-game swordfighting
actions as with the toy
sword.

Press button while
holding a lamp by the
tag to hear a "lamp
copied" message.

2l Paste
Grab the Sharpie pen
(or any tagged object)
by the tag and press
the button to hear
"lamp pasted."

3Play

Swing and thrust
gestures on the pen
now result in a glowing
sword moves in-game.

Copy-Paste of Object Programming
This application showcases a unique and novel interaction OnObject provides: An
instant and physical duplication and propagation of object programming. After one
object has been programmed to work within the gaming application, the particular
Gesture-Response mapping can be duplicated to another object with two button presses
(steps 1-5). Six or seven objects in the room may be programmed to act as an in-game
sword in one minute using this method.

These capabilities invite users to appropriate existing objects for new virtual purposes
in the game. In some cases, users may try to match the form factors of the physical
object to the virtual weapon: trays in the kitchen may be used for a shield in the
game. In other cases, physical affordances may be mismatched for creative outcome: a
lightweight pencil may be used for faster maneuvering; non-stick-shaped objects like a
round tube or a banana can be used to control in-game sword more ergonomically.

Taking this notion of copy-paste one step further, there can be modifier objects whose
properties can be added to the virtual representation of the programmed objects. As
seen in the steps 6-8 above, a lamp is a modifier object with a glow property. When the
definition of lamp is added to the Sharpie pen, the pen acts as a glowing sword in the
videogame.

Figure 42 Propagation of programming via copy-paste.

100

- - --..-- _._- -- - - - - -- .- - - __ __ - & - __ - m.-

Personalizing Play Tools
Based on this notion of copy-paste, users can duplicate the programming of an existing
object to a new object and then modify or repurpose it to create a unique weapon or
tool for themselves. We speculate game players can highly personalize their physical
tools using OnObject: a Sharpie pen that is just the right size and weight for me that
acts as a glowing sword in Zelda; a scarf that works as a cloak in-game that I can wave
masterfully for dramatic effects; a water bottle that I've used for the last four months
that works as all kinds of weapons in the game.

By appropriating and mastering situated physical objects, game players would be able
to tout their personalized gaming tools not unlike master chefs or painters who often
possess personalized and beloved tools, rather than using one-size-fits-all controllers
provided by the manufacturer.

In fact, ABC, Storytelling and Swordplay applications demonstrate OnObject allows
users to appropriate situated everyday objects as personalized education, storytelling,
and videogaming.

Figure 43 Custom made chef knives (top), chefs master their toots for better performance (bottom).

101

..............

Evaluation Sessions
OnObject applications introduced above have been demonstrated
to audience members and tried by participants on the following
occasions.

5.4.1 Play Session with
Preschool Children
In May 2010, two children were invited to play with OnObject with the facilitation by
a fellow research assistant for 60 minutes. The children were 3- and 5-year-old sisters.
Over a dozen tagged objects including stuffed animals and plastic imitation fruits
were present, and more RFID tags were provided along with adhesive tape and a glue
gun. Other play materials such as color pencils, blank and used papers and clay were
provided (Figure 44).

Figure 44 Tagged toys were provided.

102

....

Soft Device
A more child-friendly OnObject device was provided, neoprene-covered to protect the
children's hands from hard and sharp circuit boards, also simplifying the overall shape
and only exposing necessary lights and button for better usability (Figure 45).

Figure 45 Soft device with elastic antenna band.

Recording Sound Into Objects
A 3-year-old child successfully recorded her own voice into a tagged lump of clay she
sculpted, and then to a tagged banana following the instructions from the facilitator.
The initial recording, from encountering the device (child asks "what is this?") to
playing her recorded voice with grab gestures, took 27 seconds.; the second time with a
tagged banana the Gesture-Response process took 11 seconds:

Table 12 shows the 3-year-old recording sound into the lump of clay, and Table 13 shows
her recording sound into a tagged banana. Video documentation of these activities is
available online [61].

103

.. - -

Table 12 1 Tag
nr-old recording The child inserts a tag

of clay. into a lump of clay.
She sees the OnObject
device facilitator is
holding and asks "what
is this?"

2 Gesture
Guided by the
facilitator, the child
grabs the device in her
hand, touches the clay
by the tag to hear a
chime sound. She says
"yeah."

3 Response
Facilitator presses
the button and asks
her to say something.
The child hesitates,
then says "this is not a
snowman.

4 Play
The child touches the
clay to hear her voice,
and giggles.

104

. W.

Table 13
3-year-old recording
sound into a tagged
banana.

Already tagged.
Child says "this is a
banana!"

Gesture
The child grabs the
device and touches the
banana by the black
dot tag.

3l Response
The child presses the
button herself and says
"Banana--!" toward the
banana this time.

4Play

The child touches the
banana again to hear
her voice and giggles.

105

Incorporating Tags to Objects

Motivated by the presence of small RFID tags, easy to use masking tape, and a

demonstration by the facilitator, children applied RFID tags to a variety of objects
available around them.

Clay: 3-year-old child created ad-hoc toys by sculpting provided clay and inserting tags

on them. While the lump of multicolor clay sculpture in Figure 46 is not recognizable
by others, the child had particular ideas about its identity, and declared "this is not a
snowman." By recording those words into the clay, she has specified its identity and
has mentally changed their meaning to herself and other people around her.

Figure 46 Lump of clay sculpted and tagged by children.

Umbrella and Pencil: Once they saw a demonstration of OnObject, both children
applied tags to an umbrella and a pen and requested to put sound in them (Figure 47).

Figure 47 Child tapes two RFID tags to an umbrella and a pencil.

106

......... - --- - --------- -

Drawings: The 5-year-old child made drawings on a blank sheets of paper, applied tags
using yellow masking tape, and attempted to record sound to the tags (Figure 48). This
suggests a novel application of OnObject: user-created interactive books where user
can make their own drawings, record their voice into specific scenes or characters of the
drawing, and play them by touching the spots on the drawing. This function has been

previously implemented in Jabberstamp (2003) by Raffle et al., which requires a tablet
input device to be placed beneath each drawing, a microphone-integrated tablet pen,
plus a tablet eraser pen [55].

In contrast, interactive stories created by OnObject can be used in its more natural form
of loose pieces of paper in any size or shape without an electronic device underneath.
Also, the attached tags makes it clearer where sounds may be embedded, and children

can simply remove or relocate each sound by re-taping the tags.

Figure 48 Drawing created and tagged by a 5-year-old child.

Roleplaying and Storytelling
Simple Q&A: Using the ability to program different sound for different gestures, the
facilitator was able to have an engaging and rhythmic exchange with the children about
animal sounds. Tags were glued to stuffed frog and pig, and the facilitator recorded
"what does a frog say" into a frog when it's grabbed, and "ribbit" when it's shaken prior
to the following sequence:

107

...
... - -. -

Table 14
Children have
rhythmic exchange
with a facilitator
about animal
sounds.

1 Play
The facilitator grabs
the frog to play his
voice saying "What
does a frog say?"

The children respond:
"Ribbit!"

2 Play
As the facilitator
shakes the frog and
it says "ribbit" in
his voice too, the
children start singing
along: "Ribbit, Ribbit,
Ribbit..."

3 Gesture
The facilitator says
"What does a pig say?"
then shakes the pig
to hear default boink
sound response.

4Response

The facilitator presses
button down and
extends the pig to a
child who responds
"oink."

108

..

Children were overall comfortable with the sequence of the interaction during the

session and were able to incorporate it into their play activities. Real-time video
documentation is available online [61].

Lion Play: With a scripted story application, the children repeatedly played a lion

character story which includes dancing and fanfare (Figure 49). The 5-year-old was able

to prompt the stuffed lion to say pre-recorded lines when grabbed and shaken.

Figure 49 The child grabs and shakes a tagged lion with OnObject device for roleplay.

109

... ----------

5.4.2

Figure 50 Author giving swordplay demonstrations (left), tagged props in display (right).

110

Media Lab Sponsor Week
Demonstration

OnObject ABC, Storytelling, and Swordplay were demonstrated to over 60 visitors of
diverse background at the research open house in May 2010. More than 10 visitors
participated in the demonstration to varying degrees by providing their own voice for
recording, pressing the recording button, or trying grab gestures on a variety of objects.
Many expressed surprise at the ability to incorporate regular objects for interactive
play. Some found the prospect of user-created applications like interactive drawings
interesting, and suggested other possibilities including a treasure hunt. Many visitors
found the Swordplay application particularly amusing. The fact that one can enjoy
Nintendo Wii-like interaction with their own belongings and copy-paste the setting from
a sword to a pen surprised the audience. A visitor from consumer electronics industry
commented "I think of the many possible applications."

Visitors familiar with the RFID technology noted that it was an unusual way of utilizing
the particular technology. However, for those not familiar with RFID, the details were
not considered important. Without necessarily knowing how RFID works, visitors easily
accepted that the device detects the tags when touched. Instead of seen as an radio
antenna technology with an effective range, visitors simply understood it as a near-
touch detection.

...... --- __ ----- - ---------

Toy Prototyping Test
In order to test the OnObject Clay application, a 34-year-old female participant spent
60 minutes brainstorming and prototyping interactive toys in April 2010. Participant
was a design professional who had not previously seen OnObject in action. She was
asked to brainstorm as many toys as possible that will encourage children to become
more physically active and immediately create functioning prototypes of those toys.
This test was conducted partially in Wizard-of-Oz style, as the facilitator configured the
mapping of tags, gestures, and output sound using KeyMapper text file according to the
participant's decisions. However, once the mapping was complete, the resulting gestural
interaction was functional and tested by the participant herself.

Procedure
The participant was given a set of prototyping "ingredients"-foam blocks, LEGO blocks,
tubings, tapes, clay, cardboard, glue gun, and labeled RFID tags. She was then shown
and provided with an OnObject device and 26 tags. The facilitator explained four
gestures (grab, circle, swing, thrust) that can be attached to each tag, and four sound
effects (water, chime, boink, kiai) that can be triggered by those gestures.

The participant described her ideas aloud as she assembled the ingredients (Figure 51-
1), attached a tag to the assembled prototype (Figure 51-2), and stated to the facilitator
the tag she used (labeled A through Z) and which gesture on the tag will trigger which
sound effect. The facilitator then changed the configuration text file and executed
the application. The participant tried the gestures and explained the toy idea to the
facilitator (Figure 51-3), before moving onto the next idea (Figure 51-4).

Results
During the 60-minute section, the participant was able to brainstorm and demonstrate
9 ideas that respond to gesture triggers. The ideas included: X-shaped weapon, a
cleaning sponge that makes noise when used in circular motion to clean windows, an
arrow that is spun by one player and grabbed by another player pointed by the arrow, a
cleaning mop thrust to make sound, and an aerobic and yoga device.

As the session progressed, the participant became comfortable with the features of
the system and started to suggest ideas that were outside of original criteria yet she

111

felt were well-suited to OnObject. Three of the ideas involved using only the OnObject
device without an actual toy in hand, designed to provide feedback for dancing
and exercise activities or theatrical presentations. Two notable feedback from the
participant are as follows:

Audio response enables diverse and engaging interaction: Even though the response
was limited to short audio playback, the participant commented that it still afforded
many scenarios where the interaction was fun and new, and that by simply adding audio
feedback, mundane activities like exercising or cleaning could be made significantly
more engaging.

Inaccurate gestures can be a useful part of the interaction: Toward the end of the
session, the participant suggested ideas that trigger sound response to any known
gesture or general level of activities. She suggested that when the user is allowed to
make imprecise and freeform gestures that still trigger responses, the unexpectedness
in fact encourages more activities.

Figure 51 Participant brainstorms toys, sculpt and tag them, and trigger audio response to gestures.

112

Analysis and
Reflections

5.5.1 Novelty and Appeal
How interesting and exciting is OnObject?

Overall, those who used OnObject, saw live demonstrations, or saw the videos
have expressed that it was new and different. The verbal comments received from
the audience and peer-reviewed conference submission indicates that the notion
of "programming" real objects, incorporating routine objects one by one as you go
and making them interactive, copy-paste propagation, and the easiness that suits a
complete novice user or a child were perceived novel to HCI experts and end users.

The most common excitement was regarding the possibility of creating interactive story
plays with the audience's children and playing video games using everyday objects. "I
can imagine how excited my girls would be to play with this," said an audience member
who attended the OnObject presentation at the SEGD Conference in June 2010 [56].

Those who have prior experience using or developing for the RFID technology
recognized that OnObject applied an existing technology to new purposes other than
shipping, supply chain tracking, transportation or activity tracking. A visitor from a
consumer electronics company wrote OnObject showed an "interesting use of RFID
technology."

However, for end users, children, designers, or product development experts who
were not so technology-centric, what seems to have impressed them the most was the
ability to give a virtual meaning to the mundane everyday objects and perceive them
differently, similar to the notion of a magician turning an inanimate object into an active
character.

113

For instance, the 3-year-old child from the play session learned to record sound into
a tagged banana so that when she touches it she hears "banana" in her voice. This
appeared to give her the idea that she can make everything tell her their names. She
immediately turned to a bundle of pencils and went, "let's try this..." Then she said
"pencils!" holding the device toward the pencils, as if she is using the device as a magic
wand (Figure 52). While this is not the correct way to use the device as the device needs
to be in a much shorter distance to the object, in her mind, the inanimate objects had
become capable of speaking, or rather, she had become capable of making them speak.

Figure 52 3-year-old child wants to record sound into pencils from a distance.

114

Echoing this observation, a consumer electronics industry insider also noted in
response to the Sponsor Week live demo, "using technology connected with the human
imagination can be a powerful tool and communicator" for children and adults alike,
nothing that part of her interest in OnObject was "my 'inner kid' bragging about the
newest toy."

5.5.2 Clarity and Usabity
Is the interaction clear for the user and the audience?

Tags
The 9mm diameter plastic RFID tags proved easy to apply to a variety of objects
including paper, clay, stuffed toys, plastic and wooden toys, pencils, and umbrellas,
even in the hands of a 3-year-old. While a more durable adhesive like the glue gun was
useful for many applications, it was also important to have easier and quicker tools like
masking tape to encourage experiment without committing to a particular design of the
new gesture object interface.

Going forward, a potential problem with these tags when used with children is the
choking hazard: the Child Safety Protection Act (CSPA) prohibits small parts to be used
for children under 3 years of age [57]. However, this problem is largely avoidable by
targeting audience 3 years or older and adding labels as mandated by the government
regulations.

Figure 53 The 9mm diameter laundry tags mainly used for evaluations (top left).

115

Ergonomics of the Device
Some of the performance errors with gesture recognition is closely related to how the
device is worn and constructed. While the toy test participant, play session facilitator
and children were able to wear the device and eventually make the grab, shake, circle,
swing, thrust work for them, there are obvious points of improvement:

Wires: The current version of the device is connected to the computer via 6-wire
serial-to-USB cable and two wires for the microphone. Making the device completely
wireless and easy to recharge will take considerable amount of effort. As an interim
solution, however, the USB cable can be replaced with a Bluetooth module for wireless
communication and two power wires. By removing the heavy USB cable connected to
the device, the accelerometer data is expected to have less noise.

Orientation: Because gesture recognition relies on the accelerometer data, for many
applications it is important the device is worn in the right orientation. Future designs
and version of device will have to make the orientation clearer.

Tag-Gesture-Response Flow
Interaction Sequence: All three participants and a facilitator from the play session
and toy prototyping test were able to follow the programming procedure without much
difficulties. Most who watched the video demonstration of OnObject ABC were able to
conclude that the recorded sound is associated with the last performed gesture. When
the 3-year-old child from the play session was led by the facilitator the first time she
recorded her voice into clay, she spoke toward the facilitator. However, after seeing the
result of the first programming she made her next recording explicitly toward the tagged
banana, indicating that she understood the logic of the interaction sequence.

Feedback: With all participants and audience, the default sound feedback upon grab
played an important role. Because there is no display in the device and the scenarios
incorporate situated objects, users often do not expect digital or computational
experience when they first encounter OnObject. When they hear the chime sound when
you touch or grab an object, it is the first indication that an interactive experience is
beginning. As this is unexpected, some participant expressed excitement, such as the
3-year-old child saying "yeah" when she first heard the chime. Although there is an
indicator light on the device for tag detection, future design of the device can utilize the
light feedback and make it more visible and meaningful by incorporating color change
or placing the light differently.

116

Feature Requests
What more do people want to see?

Multi-User Interaction
In three separate presentations, audience members asked for an application where
more than one user are wearing the device.

The Ceiling
Despite the participants' satisfaction regarding audio response, the technical simplicity
of the response has been named a point of improvement by HCI experts. What is the
ceiling of the OnObject solution, i.e., can we built more complex applications than
simply TUI-stories where the only interactive part is audio playback? In order to
address this issue, we are considering three strategies.

- Multimodal Output: Employ other modalities of output, such as visual output as
in the Swordplay application or Internet-connected data output such as posting an
entry to a website.

e Multi-User Interaction: Consider applications that involve two or more users
wearing the device.

. Programmable Narrative: Make audio-only narrative construction more
complex and grammatical, by providing abilities to add conditionals, sequential
contingencies, or timeout functions.

See Section 6.2 for a list of proposed future improvement to OnObject.

117

5.5.Performance Dimension
What interesting aspect has come to attention?

Prototyping as a Performance
In The Art of Innovation, Kelly noted [54] "Years of experience have taught us that
prototyping is also part performance, that if the act isn't well orchestrated and
substantial, the audience gets antsy." During the toy prototyping test, the participant
exhibited similar tendency where she was not only explaining the concept, but giving an
energetic and entertaining rendition of the toy usage. As OnObject enables much faster
turnaround of simple interactive prototyping, it can make the prototyping session into
a more enjoyable group activity and increase the energy level that Kelly notes as crucial
to successful brainstorms.

Usage and Demonstration as a Performance
As demonstrations for live audience or video shooting progressed, it was noted the
body gestures had more and more "flare" and theatrical quality. Instead of a normal
grabbing of an object, the demo grab gesture often resembled a slow-motion gesture,
and the shake gesture was accompanied by a low-pitch voiceover. Similarly, the 3-year-
old child expressed a level of authority when she commanded the pencils to speak.

These tendencies not only applied to the trigger gestures, but also to the transition
between them. A remarkable example is the hand transition between copying and
pasting: After pressing the button on the sword, the hand released the sword and
traveled to grab the Sharpie pen in a theatrical manner, with a verbal explanation
"the definition of the sword is now in my hand, and I am transferring it to the pen..."
Although these transitional movements are not a part of OnObject's functional
requirements, these are still part of what Kendon and Goffman dubbed "foreground
action" and "main-line" attentional track [58].

As the users of OnObject become familiar with the use, they seem to establish a flow
of foreground actions and embellish them to convey specific sentiments or meaning,
whether it is command (3-year-old child), transfer (copy-paste), or excitement (toy
test), with an external audience in mind - adding a performance dimension to the user
experience.

118

Power of User-Defined Mapping
A potential explanation of this transition from a "user" to a "performer" can be found
in the Bowl platform study by Martinussen et al. [40] Their research found that
"homemade" tokens mapped to user-created content proved to be more engaging than
pre-mapped tokens to a 2-year-old child. While the child successfully used and explored
pre-mapped tokens with clear association, when it came to homemade tokens that she
found and mapped to content created with her parent, the child turned into a performer
of a sort, enthusiastically presenting the tokens and associated memories to visitors.

The anecdotal evidences from this study and OnObject experience support a hypothesis
that when the user defines the mapping between the object, their actions and the
system's responses, users "buy into the interface" - they find the interface believable
because they defined it. As they are already persuaded, users can skip the usual steps
necessary to validate the interface and instead focus on persuading others. A more
ecologically generalizable study would be necessary to test this hypothesis.

119

Chapter 6

Conclusion

Proposing a scalable, simple, yet engaging method to
incorporating situated objects in interactive experiences,
OnObject claims programming of physical objects as a
new area of Tangible User Interfaces.

120

N

121

...

6.1efining

Contributions
The design of OnObject has introduced a novel class of Human-
Computer Interaction: gestural programming of situated physical
objects. The novelty and merits of OnObject approach to
programming includes the following:

Embodied
Instead of writing code, the user's hand is the primary medium for associating
between object and subsequent programming, demonstrating gestures, and initiating
programming commands like recording and copy-paste.

Body-Object-Centric
A small sensing platform has been developed for user's hand, which leads users to focus
on the point of interation and enables mobile and pedestrian use.

Scalable
Rapid and low-commitment tagging is applicable to a broad set of real situated objects,
and encourages open exploration.

Grammatical
OnObject introduced a simple grammar of programming, Tag-Gesture-Reponse
flow. Copy-pasting programming between objects in the Swordplay application also
demonstrated that the grammar may be further expanded for more rich and complex
interactions.

122

User-Defined Mapping
Instead of being exposed to low-level development tasks, the user is led to focus
on creating an enjoyable mapping between gestures and audio responses. As the
user defines the mapping between a particular object, gesture, and response, the
interaction becomes more believable to the user.

Expressive
As the user is the designer of the gestural applications, she instantly becomes an
active presenter of the concept to others rather than a mere passive "user" of the
system. The user tends to bring theatrical quality and embelishment to her gestures as
she performs the interaction for others.

6.2 Future Work
As OnObject addresses a novel area of tangible and embodied programming, only a
small set of applications and possibilites have been explored in this thesis.

Multimodal Output
Employ other modalities of output, such as visual output as in the Swordplay
application or Internet-connected data output such as posting an entry to a website.

Multi-User Interaction
Applications that involve two or more users wearing the device.

Programmable Narrative
Make audio-only narrative construction more complex and grammatical, by providing
the ability to add conditionals, sequential contingencies, or timeout functions.

123

Refine Tag-Gesture-Response Flow
For example, after user demonstrates the trigger gesture, if the gesture is not properly
recognized, this step can invoke a training flow until the user learns the gesture.

Design Exploration of the Device
Smaller, user friendly form factor, and better integration of control components with
the programming flow. Implement wireless devices to free users from the bound of the
nearby computer.

Tag Dispenser and Inspector
Rapid application of tags to physical objects, to accentuate the convenience; A method
to inspect the tag and view programming associated with a given tag.

0

U

Figure 5 Tag dispenser concept sketch.

Although Curlybot [64] and Topobo [18] pioneered kinetic programming by
demonstration and tabletop systems like Lumino [65] and Sensetable [66] leverage
physical manipulation of specially made puck or cube objects, the ability to program
real-world situated objects has not been explored. OnObject highlights tangible and
embodied programming of situated objects as a potential future area of Human-
Computer Interaction.

124

I

125

Appendices

126

Antenna
AW(4m diin ete ('2r und

SU

Capacitor
270-285pF Gnd2 Vec2

oA Accelerometer000Q
Connect here to use
internal antenna instead =Gndl x

c

Micr-135 00

RFRD ReadIer - *M

ISO i5693, O9200 bpsNA2o

n Ator LE romt

B R~ B II R B R

2.7

C7, C:

Indicaor LEs

p5MA26Q

Antenna
22 AWG -1 d]In e i Digike (2(11W

o-44mm11 diameI~tr. 2 roun

Capacitor
270-285pF

Connect here to use
internal antenna insted

Tagsense
Micro-1356 F
RFID Reader
TFL/UART
ISO 15693, 19200 bps ""

Sparkfun
Bluetooth
Mate
SKU WRL-o9358

t 10

prgut d battey~ pow s V V (

d (1)h o inecte(to

B. Device Firmware Arduino Code

/*
Onobject Arduino Device code
for Tagsense Micro-1356 RFID reader and MMA7260QT accelerometer
By Keywon Chung, Chris Merrill 2009-2010
Prints out 345 xxx yyy zzz 678 0000000000000000 999 0

-Arduino gets 3-axis accelerometer data from analog pins.
-Arduino gets 16-byte RFID tag data via NewSoftSerial.
See http://arduiniana.org/libraries/NewsoftSerial/

-Arduino sends the accel and RFID data to Python for gesture recognitio
via hardware serial.

-when a tag is detected, one LED is turned on.
-when user presses a button on the device, another LED is turned on.
-when a known gesture is detected, the last LED is turned on.
-Applications can also send a string to the Python gesture server
via socket server/client connection
http://mostrey.be/python-socket-server-forflash
-Python then sends the string to Arduino via hardware serial
(Pyserial library for Python) to control the LEDs on the hardware.

#include <Newoftserial.h>

int accelmode = 2;
// accelmode 0: print in serial monitor
// accelmode 1: plot graph in processing
// accelmode 2: send to python recognizer

#define RXPIN 2 // digital pin: software serial rx pin
#define TX_PIN 3 // digital pin: software serial tx pin
#define XPIN 2 // analog pins A2 - AO
#define YPIN 1
#define ZPIN 0
#define LEDPIN1 9 // digital pins with PWM, towards finger
#define LEDPIN2 10
#define LEDPIN3 11 // toward wrist
#define BTNPIN 12

#define RFIDDATALEN 16 // tag ID is "*" + 16 bytes long
int rfidbytecount = 0; // increment within DATALEN
int tag-present = 0;
#define APPDATALEN 2
int app-bytecount = 0; // increment within FLASHLEN
int btn-status = 0;

// Baud rates:
// RFID reader to Arduino via software serial: 19200
// Accelerometer + RFID reader data on Arduino to the computer
// via hardware serial: 9600
// Pins:
// digital 2/3: soft serial rx/tx
NewSoftSerial RFID = NewSoftSerial(RXPIN,TXPIN);
unsigned long time;

// data storage

129

char rfiddata[RFIDDATALEN]; // string, to store tag ID
char app-data[APPDATALEN]; // string, to store messages coming from applications like Flash
char old-tag[RFIDDATALEN]; // previous tag ID

// led values 0-255, time delay (reverse for white LED later: this is for RGB led)
int led-offvalue = 255; // approximation of forward voltage drop, where the LED actually
appears off (80)
int ledfullvalue = 80;
int led-increment = 1; // how much to dim each time
// don't turn off LED until you see tag absent N consecutive times: ignore little glitches
int tag-offcount = 0;
int tag-absent-threshold = 2;

// map led functions: tag present, gesture found, etc.
int LEDTAG = LEDPIN1;

void setupo {
RFID.begin(19200);
Serial .begin(9600);
pinMode(RXPIN, INPUT);
pinMode(TXPIN, OUTPUT);
serial.println("Start");
// configure RFID reader
RFID.print("p3\r\n"); // check
serial .print("p3\r\n");
delay(100);
RFID.print("d\r\n"); // enable
serial .print("d\r\n");
delay(100);
RFID.print("k\r\n"); // enable
Serial.print("k\r\n");
delay(100);
RFID.print("S\r\n"); // enable
serial .print("S\r\n");
delay(100);
// to print reader's response:

for IS015693: reader should print "p" back

continuous data streaming: reader should print "d" back

continuous autoscan: reader should print "k" back

continuous autoscan: reader should print "k" back

// char readerByte = RFID.read(;
// serial.write(readerByte);

// LED pins to be turns on based on Flash commands: this pinmode is not necessary.
pinMode(LEDPIN1, OUTPUT);
pinMode(LEDPIN2, OUTPUT);
pinMode(LEDPIN3, OUTPUT);
// turn off LEDs
analogwrite(LEDPIN1, led-offvalue);
analogwrite(LEDPIN2, led-offvalue);
analogwrite(LEDPIN3, led-offvalue);

130

void loopo {

// Send data continuously to the computer/python via serial; flush is crucial
// Empty initial RFID ID storage and App message storage
clearrfiddatao;
clear-app-data(;
RFID.flushO;

//---- ------------------------
// Frame incoming bytes, get accel > rfid data > look for app messages

if (accelmode == 0) { // print in serial monitor
Serial .print(3);
serial.print(4);
serial.print(5);
serial.print(" ");
serial.print(analogRead(XPIN));
serial.print(" ");
serial.print(analogRead(YPIN));
serial.print(" ");
serial.print(analogRead(ZPIN));
Serial.print(" ");

Serial .print(6);
Serial.print(7);
serial.print(8);
Serial.print(" ");

print-tagid(;
Serial.print(" ");

Serial.print(9);
Serial.print(9);
Serial.print(9);
serial.print(" ");

print-button-status(;
serial.printlno;
/* // approximate sampling rate: 19.2-20 Hz
time = millisO;
Serial.print(" millis- ");
Serial.println(time);
*/

}
else if (accelmode == 1 || 2) {

// send to processing to plot graphs
// send to python to run applications
Serial.write(3);
Serial.write(4);
serial.write(5);
Serial.write(analogRead(XPIN)/4 - 10); // because byte only goes up to 256
serial.write(analogRead(YPIN)/4 - 10); value will be multiplied by 4
Serial.write(analogRead(ZPIN)/4 - 10); again in python.
Serial.write(6);
Serial.write(7);
Serial.write(8);
delay(10);
print-tag-ido;
Serial.write(9);
Serial.write(9);
serial .write(9);
print-button-statuso;

131

if (accelmode == 2) {
app-to-arduino(;

} // end of loop

void
in

//
if

}

t
print-button-status() {
i = 0;

programming button pressed or not

(digitalRead(BTNPIN) == LOw) {
analogwrite(LEDPIN2, led-fullvalue);

i = 1;

else {
analogwrite(LEDPIN2,
i = 0;

I

if (accelmode == 0) {
serial .print(i);

}
else {
serial.write(i);

led-offvalue);

void print-tag-id() {

- ---------------------------
// wait for "*"
char in = (char)RFID.read(;

Read RFID Data

// is it garbage, or is there a tag ID starting with a "*"?
if (in == '*') {

// beginning of * + 16 bytes tag ID
// once you detect a "*", store the following 16 bytes of tag ID
while (rfid-bytecount < RFIDDATALEN) {

in = (char)RFID.read();
// bytes after the "*"
rftddata[rfdbytecount] = in;
rfidbytecount++;

}
// indicator LED on
analogwrite(LEDTAG, led-fullvalue);
tag-offcount = 0;

else { // no "*" found: make tag id 16 "O"s
clear-rfid-datao;
// ignore little glitches, don't turn LED off
// until you see tag absent for N consecutive times
if (tag-offcount > tag-absent-threshold) {
analogwrite(LEDTAG, led-offvalue);

tag-offcount++;

132

// Check to make sure we didn't recieve junk data
if (!check-string(rfiddata,RFIDDATALEN)) {
copy-array(old-tag,rfid-data,RFIDDATALEN);

I
// finished storing all 16 bytes
if (rfidbytecount >= RFIDDATALEN && rfid-data[1] '*') {
// send 16 byte string tag ID to Python
for (char i = 0; i < RFIDDATALEN; i++) {
serial.write(rfid-data[i]);

copy-array(rfid-data,old-tag,RFIDDATALEN);
// re-initialize the variables
rfid-bytecount = 0;

else { // no complete tag ID found: still send 16 "O"s

for (char i = 0; i < RFIDDATALEN; i++) {
serial.write(rfid-data[i]);

I
copy-array(rfid-data,old_tag,RFIDDATALEN);
// re-initialize the variables
rfid-bytecount = 0;

// for debugging
int is-empty() {

for(int i = 0; i

if(rfid-data[i]
return 0;

< RFIDDATALEN; i++) {
!= '0') {

return 1;

// copy the contents of one array into another
void copy-array(char * orig, char * into, int size) {

for (int i = 0; i < size; i++) {
into[i] = orig[i];

// check to see if there are non-hex characters
boolean check-string(char * str, int size) {

char c = 0;
for (int i =0; i < size; i++) {

c = str[i];

if (!((c < 58 && c > 47) || (c < 123 && c >

in the string

96))) return false;

return true;

void clear-rfid-data() {
for (char i = 0; i < RFIDDATALEN; i++) {

rfiddata[i] = '0';

}
}

133

void clear-app-data() {
for (char i = 0; i < APPDATALEN; i++) {

app-data[i] = '

}
}

////////////////////////////////// Serial.print can be watched from serproxy
void app-to-arduino ({

// ----------------------------- FLASH/PYTHON to LED
if (Serial.available(> 0) {

char in;
app-bytecount = 0;
in = (char)serial.reado;

// is it garbage, or is there a flash string starting with a "_"?
if (in == '_') {

// beginning of - + 1 byte string from app
// once you detect a "_", store the following 1 byte of string
while (app-bytecount < APPDATALEN) {
app-bytecount++;
in = (char)serial.read(;
// app-data[app-bytecount] = in;
if (app-bytecount == 1) {

int msgNum = int(in) - 48; // ascii to decimal
clear-app-data(;
if (msgNum == 5) {

// app specific LED feedback
// ... resume processing gestures and tags

}
else if (msgNum == 4) {

// known gesture started
analogwrite(LEDPIN3, led.fullvalue);

}
else if (msgNum == 3) {

// known gesture ended
analogwrite(LEDPIN3, led-offvalue);

}
} // end of if bytecount

} // end of while
} // end of if in == _

} // end of if serial available
}

134

C. Basic ABC/Storytelling Application Python Code

##
demo settings: froggy, kangaroo, bunny, piggy, aardvark, bird on table, lion is away

froggy, kangaroo, and lion tags have hardcoded response, the other tags behave same as
audio06

froggy grab: what's your name?
user: press button "___ release button
froggy shake: hello _, let's go jump with the kangaroo!
kangaroo grab: jump with me!
kangaroo shake: boink [kangaroo and froggy jump together]
lion grab: roar, what is happening?
lion thrust: let's play some music!
cup grab: fanfare [put it on the aardvark's mouth]

comp-recognizer-st.py with shake-recognizer-weak.py
shake, swing, thrust are interchangeable. shake is weak

to run: python animal.py comp tag
reco mode shake = only detects grab, release, shake
reco mode dt = detects grab, release, circles, swing, thrust
reco mode comp = detects grab, release, shake, swing, thrust
(circle = disabled from comp-recognizer)
reco mode all = not implemented yet
app mode tag = tag gestures only
app mode ghost = empty handed gesture triggers response for last real tag
app mode empty = empty handed gesture gets its own trigger and response

press Control Z to exit
##

import sys

from optparse import OptionParser

import logging
import threading
import datetime

import simplejson
from recognizer import *

from shake-recognizer-weak import *

from dt-recognizer import DTGESTURE
from dt-segmented import *
from comp-recognizer-st import *

import pyaudio
import wave
import sys

BASELINESAMPLESIZE = 20

#SERIALPORT = '/dev/tty.usbserial-A600aips'
#SERIALPORT = '/dev/tty.usbserial-A600aipH'
#SERIALPORT = '/dev/tty.usbserial-A600aims'
#SERIALPORT = '/dev/tty.usbserial-A600aipu'
#SERIALPORT = '/dev/tty.usbserial-A6008i1I'
#SERIALPORT = '/dev/tty.usbserial-FTESJFZW'
#SERIALPORT = '/dev/tty.usbserial-FTESJDz6'
SERIALPORT = '/dev/tty.FireFly-2796-SPP' # Bluetooth Mate

135

SERIALBAUDRATE = 9600
tag = None
prev-realtag = None # except for 0000000000s
tag-gesture-response-dict = defaultdict(dict)
chunk = 1024

FORMAT = pyaudio.paInt16

CHANNELS = 1

RATE = 44100
FROGTAG = 'e00401003da512c4' # H

KANGAROOTAG = 'e00401003da51421' # U

LIONTAG = 'e00401003da52d74' # N

LOGFILE = 'gesture-sendkeys.log'

logging.basicConfig(filename=LOGFILE, level=logging.DEBUG)

class AsyncRecorder(threading.Thread):

IDLE = 0

STARTRECORDING = 1
RECORDING = 2
STOPRECORDING = 3

def _init_(self):
threading.Thread._init_(self)

self.read-sensor = True
self.soundjiles = ["chime.wav"]
self.state = self.IDLE
self.record-obj = None
self.record-data = []
self.record-stream = None
self.wait-event = threading.Event()
self. start()

def run(self):
while True:

self.wait-event.wait() # puts run() on hold, not taking up cpu
print '.'

if self.state == self.STARTRECORDING:
self.record-obj = pyaudio.PyAudio() # repeated
self.record-stream = self.record-obj.open(format=FORMAT,

channelsS=CHANNELS,
rate=RATE,
i nput=True,
framesdperbuffer=chunk)

self.recorddataapn[t
self.state = self.RECORDING

elif self.state == self.RECORDING:
data = self. record-stream. read (chunk)
self. record-data.append (data)

elif self.state == self.STOP-RECORDING:
self.record-stream.close()
self.record-obj.terminate(

write data to WAVE file
data = ''.join(self.record-data)
t = datetime.datetime.now()
filename = str(t) + ".wav" 136

self.soundfiles.append(filename)
filepath = "./soundjiles/" + filename
wf = wave.open(filepath, 'wb')
wf.setnchannels(CHANNELS)
wf.setsampwidth(self.record-obj.get-sample-size(FORMAT))
wf.setframerate(RATE)
wf.writeframes(data)
wf.closeO
self.state = self.IDLE
self.wait-event.clearo

def start-recording(self):
assert self.state == self.IDLE, 'Expected IDLE, got %s' % self.state
self.state = self.STARTRECORDING
self.wait-event.set() # resumes runo
print "* recording"

def stop-recording(self):
print "* done recording"
assert self.state == self.RECORDING, 'Expected RECORDING, got %s' % self.state
self.state = self.STOPRECORDING
while True:

if self.state == self.IDLE:
return self.soundfiles[-1]

def exit-program(self):
self.joino

def _play-sound(self, filename):
self.read-sensor = False
filepath = './soundfiles/'+filename
wf-play = wave.open(filepath, 'rb')

play-obj = pyaudio.PyAudioo

open stream
play-stream = play-obj.open(format =

play-obj.get-format-from-width(wf-play.getsampwidtho),
channels = wf-play.getnchannels(,
rate = wf-play.getframerateo,
output = True)

read data
data = wf-play.readframes(chunk)
#import pdb; pdb.set-trace()

play stream
while data != '':

play-stream.write(data)
data = wf-play.readframes(chunk)

play-stream.close()
play-obj.terminate(
self.read-sensor = True

class APPMODE(Enumeration):
TAG = 'tag'

137

GHOST = 'ghost'

EMPTY = 'empty'

class RECOMODE(Enumeration):
COMP = 'comp'

SHAKE = 'shake'

DT = 'dt'
ALL = 'all'

class AudioApp(object):
def _init_(self, reco-mode, app-mode):

self.recorder = AsyncRecordero
self.last-sound = 'boink.wav'
self.app-mode = app-mode
self.reco-mode = reco-mode
self.last-gesture = GESTURE.NONE
self.last-nonzero-tag = NOTAG

if self.reco-mode == RECOMODE.COMP:
print "reco mode comp = grab, swing, shake"

elif self.reco-mode == RECOMODE.SHAKE:
print "reco mode shake = grab and shake"

elif self.reco-mode == RECOMODE.DT:
print "reco mode dt = grab, swing, circle, thrust"

if self.app-mode == APPMODE.TAG:
print "app mode tag = tag gestures only"

elif self.app-mode == APPMODE.GHOST:
print "app mode ghost = empty handed gesture triggers response for last real tag"

elif self.app-mode == APPMODE.EMPTY:
print "app mode empty = empty handed gesture gets its own trigger and response"

def on-button-down(self, tag):
print "button down"
self.recorder.read-sensor = False
self.recorder.start-recording()

def on-button-up(self, tag):
print "button up"
self.last-sound = self.recorder.stoprecording()
print 'sound attached to', self.last-nonzero-tag
tag-gesture-response-dict[self.last-nonzero-tag][self.last-gesture] = self.last-sound
print "attached to tag", self.last-nonzero-tag, "on", self.last-gesture
self.recorder.read-sensor = True

def on-tag-grab(self, tag):
print 'g'
self.last-nonzero-tag = tag
self.last-gesture = GESTURE.GRAB
if tag == FROGTAG:

self.recorder._play-sound('froggy-iam.wav')
self.recorder._play.sound('froggy-whatsyourname.wav')

elif tag == KANGAROOTAG:
self.recorder._play-sound('kangaroo-hello.wav')
self.recorder._play-sound(self.last-sound)
self.recorder._play-sound('kangaroo-jumpwithme.wav')

elif tag == LIONTAG:

138

self.recorder._play-sound('lion-happening.wav')
elif tag == 'e00401003da51c97':

self.recorder._play-sound('2010-05-16 21:09:31.774802.wav') # p is for
elif tag in tag-gesture-response-dict:

self.on-gesture(tag, GESTURE.GRAB)

else:
tag-gestureresponse-dict[tag][GESTURE.GRAB] = 'chime.wav'

self.recorder._play-sound('chime.wav')

def on-tag-release(self, tag):
pass
call on-gesture with "release"

def on-gesture(self, tag, gesture):
if tag != NOTAG:

print gesture
self.last-gesture = gesture
if tag == FROG-TAG:

if gesture != GESTURE.NONE:

self.recorder._play-sound('froggy-hello.wav')
self.recorder._play-sound(self.last-sound)
self.recorder._play-sound('froggy-lets.wav')

elif tag == KANGAROOTAG:

if gesture != GESTURE.NONE:

self.recorder._play-sound('boink.wav')
elif tag == LIONTAG:

if gesture != GESTURE.NONE:

self.recorder._play-sound('lion-music.wav')
self.recorder._play-sound('fanfare.wav')

elif tag == 'e00401003da51c97':
self.recorder._play-sound('2010-05-16 21:09:41.578919.wav') # piggy

elif tag in tag-gesture-response-dict:
if gesture in tag-gesture-response-dict[tag]:

print 'playing sound for', gesture, 'on', tag
self.recorder._play-sound(tag-gesture-response-dict[tag][gesture])

else:
print gesture, "trigger added for", tag
tag-gesture-response-dict[tag][gesture] = "boink.wav" # default
self.recorder._play-sound("boink.wav")

if tag == NOTAG:

mode 1 = empty handed gesture triggers response for last real tag
mode 2 = empty handed gesture gets its own trigger and response
if self.app-mode == APPMODE.GHOST:

if gesture in tag-gesture-response-dict[self.last-nonzero-tag]:
self.recorder._play-sound(tag-gesture-response-dict[self.last-nonzero-tag]

[gesture])
elif self.app-mode == APPMODE.EMPTY:

print gesture, "empty handed : now press button and record sound"
tag-gesture-response-dict[tag][gesture] = "boink.wav" # default
self.recorder._play-sound("boink.wav")

else:
self.last-nonzero-tag = tag

class TagFilter(object):
def _init_(self):

self.min-gap = 15

self.none-count = 0

139

self.prev-tag = NOTAG

def process-tag(self, tag):
if tag == self.prev-tag:

self.prev-tag = tag
self.none-count = 0
return (tag, GESTURE.NONE)

if tag == NOTAG:
self.none-count += 1

if self.none-count > self.min-gap: # RELEASE
print 'r'
self.prev-tag = NOTAG
self.none-count = 0
return (NOTAG, GESTURE.RELEASE)

else:
return (self.prev-tag, GESTURE.NONE)

else:
self.prev-tag = tag
self.none-count = 0
return (tag, GESTURE.GRAB)

def test-tag-ilter(:
TAG1 = 'tagl'

TAG2 = 'tag2'

tag-streams = [([TAG1]*20 + [NOTAG]*10 + [TAG2]*10 + [NOTAG]*20,
[TAG1]*30 + [TAG2]*25 + [NOTAG]*5),

([TAG1]*20 + [NOTAG]*20 + [TAG2]*10 + [NOTAG]*20,
[TAG1]*35 + [NOTAG]*5 + [TAG2]*25 + [NOTAG]*5),]

for input-stream, expected-output-stream in tag-streams:
tag-ilter = TagFiltero
actual-output-stream = []
for tag in input-stream:

(output-tag, gesture) = tag-ilter.process-tag(tag)
actual-output-stream.append(output-tag)

eq_(expected-output-stream, actual-output-stream)

def main(options, args):
reader = SerialInput(SERIALPORT, SERIALBAUDRATE, INPUTDIMENSIONS)

if args[O] == RECOMODE.SHAKE:
recognizer = ShakeRecognizer(INPUTDIMENSIONS)

elif args[0] == RECOMODE.DT:
recognizer = DtRecognizer(INPUTDIMENSIONS)

elif args[0] == RECOMODE.COMP:
recognizer = CompRecognizer(INPUTDIMENSIONS)

else:
assert False, 'Mode ALL not implemented'

app = AudioApp(args[O], args[1])
tag-filter = TagFiltero

obs_0 = reader.read(
eq_(len(obs_0), INPUTDIMENSIONS + 2)
prev-button-status = BUTTONSTATE.OFF

140

print "grab object, perform gesture, and record sound by pressing button. \nunattached
object makes chime sound."

ACTIVEGESTURES = set(DTGESTURE.values() + SHAKEGESTURE.valueso)

try:
while True:

obs = reader.read(
#print obs #(244, 276, 344, '0000000000000000', 'off')

tag = obs[-2]
#print tag
button-status = obs[-1] # comes from recognizer.py _read() function
filtered-tag, grab-release = tag-filter.process-tag(tag)

if app.recorder.read-sensor:
if grab-release == GESTURE.RELEASE:

app.on-tag-release(tag)
elif grab-release == GESTURE.GRAB:

app.on-tag-grab(tag)

gesture = recognizer.append(obs[:INPUTDIMENSIONS], tag) # (local, segemented)
string

if gesture[0]:
if gesture[0] in ACTIVEGESTURES:

reader.write("_4") # turn on LED
if gesture[O] == GESTURE.NONE:

reader.write("_3") #turn off LED
if gesture[l] != GESTURE.NONE and gesture[l] GESTURE.IDLE:

#print gesture[1]
app.on-gesture(tag, gesture[1])

if button-status != prev-button-status:
if button-status == BUTTONSTATE.ON:

app.on-button-down(tag)
else:

app.on-button-up(tag)
prev-button-status = button-status

except KeyboardInterrupt:
print 'Exiting'
recorder.exit-program()
sys.exito

if _name_ == '_main_':
usage = 'usage: %prog [options] [reco-mode] [app-mode]'
opt-parser = OptionParser(usage=usage)

options, args = opt-parser.parse-args()
assert (len(args) == 2 and args[O] in RECOMODE.values()

and args[1] in APPMODE.valueso), optparser.usage
main(options, args)

141

Bibliography
1. Arduino, http://www.arduino.cc/

2. Berlin, E., Liu, J., van Laerhoven, K., Schiele, B. 2010. Coming to grips with the objects we grasp:
detecting interactions with efficient wrist-worn sensors. TEI '10. ACM, New York, NY, 57-64.

3. Dey, A. K., Hamid, R., Beckmann, C., Li, I., and Hsu, D. (2004). a CAPpella: programming by
demonstration of context-aware applications. CHI '04. ACM, New York, NY, 33-40.

4. Feldman, A., Tapia, E. M., Sadi, S., Maes, P., and Schmandt, C. (2005). ReachMedia: On-the-move
interaction with everyday objects. ISWC 2005, 52-59.

5. Hall, M., Frank, E., et al. (2009) The WEKA Data Mining Software: An Update; SIGKDD
Explorations, Volume 11, Issue 1

6. Hartmann, B., Abdulla, L., Mittal, M., and Klemmer, S. R. (2007). Authoring sensor-based
interactions by demonstration with direct manipulation and pattern recognition. CHI '07. ACM,
New York, NY, 145-154

7. Hartmann, B., Klemmer, S. R., et. al, 1. 2006. Reflective physical prototyping through integrated
design, test, and analysis. UIST '06. ACM, New York, NY, 299-308.

8. Buettner, M., Prasad, R., Philipose, M., and Wetherall, D. 2009. Recognizing daily activities with
RFID-based sensors. Ubicomp '09. ACM, New York, NY, 51-60

9. Ishii, H., Mazalek, A., and Lee, J. 2001. Bottles as a minimal interface to access digital
information. CHI '01. ACM, New York, NY, 187-188

10. Jurafsky, D., Martin, J. (2009) Speech and Language Processing: An Introduction to Natural
Language Processing, Speech Recognition, and Computational Linguistics. 2nd edition. Prentice-
Hall.

11. Jorda, S., Geiger, G., Alonso, M., and Kaltenbrunner, M. 2007. The reacTable: exploring the
synergy between live music performance and tabletop tangible interfaces. TEI '07. ACM, New
York, NY, 139-146.

12. Katsumoto, Y., Inakage, M. (2007). Amagatana. ACM MULTIMEDIA '07. ACM, New York, NY, 361-
362.

13. Kim, I., Im, S., E. Hong, E., Ahn, S., Kim, H., Ad[clas- sification using triaxial accelerometers and
rfid, in In- ternational Conference on Ubiquitous Computing Con- vergence Technology. Beijing,
China, 2007

14. LeClerc, V., Parkes, A., and Ishii, H. 2007. Senspectra: a computationally augmented physical
modeling toolkit for sensing and visualization of structural strain. CHI '07. ACM, New York, NY,
801-804.

15. Liu, J., Zhong, L., Wickramasuriya, J., and Vasudevan, V. (2009). uWave: Accelerometer-based
personalized gesture recognition and its applications. Pervasive and Mobile Computing. 5, 6
(Dec. 2009), 657-675.

16. Nielsen, J. Usability Engineering, Morgan Kauffmann, San Francisco, CA, USA, 1994.

17. Polynor, R. 1995. The Hand That Rocks the Cradle. I.D., May/June 1995, pp. 60-65.

142

18. Processing, http://processing.org

19. Raffle, H. S., Parkes, A. J., and Ishii, H. 2004. Topobo: a constructive assembly system with
kinetic memory. CHI '04. ACM, New York, NY, 647-654

20. Ryokai, K., Marti, S., and Ishii, H. 2004. I/O brush: drawing with everyday objects as ink. CHI
'04. ACM, New York, NY, 303-310.

21. Scratch Project, http://scratch.mit.edu/

22. Shilman, M., Tan, D.S., Simard, P. (2006). CueTIP: A Mixed-Initiative Interface for Correcting
Handwriting Errors. UIST 2006.

23. Vaucelle, C. and Ishii, H. 2008. Picture this!: film assembly using toy gestures. UbiComp '08, voL
344. ACM, New York, NY, 350-359

24. Wilson, A. (2007) Depth-sensing video cameras for 3d tangible tabletop interaction, TABLETOP
'07. pp. 201-204.

25. Wilson, A. and Shafer, S. (2003). XWand: UI for intelligent spaces. CHI '03. ACM, New York, NY,
545-552.

26. Zhang, H. and Hartmann, B. 2007. Building upon everyday play. CHI '07. ACM, New York, NY,
2019-2024.

27. Control Freaks http://failedrobot.com/thesis

28. Johansson, S. 2009. Sniff: designing characterful interaction in a tangible toy. IDC '09. ACM, New
York, NY, 186-189

29. Verplaetse. C., Inertial Proprioceptive Devices: Self motion-sensing toys and tools. IBM Systems
Journal Vol 35. No 3-4, 1996, 639-650

30. Hudson, S., Mankoff, J. Rapid construction of functioning physical interfaces from cardboard,
thumbtacks, tin foil and masking tape. UIST '06. 289-298.

31. MITes and Wockets http://web.mit.edu/wockets/

32. Revelle, G., Zuckerman, 0., Druin, A., and Bolas, M. 2005. Tangible user interfaces for children.
In CHI '05 Extended Abstracts on Human Factors in Computing Systems (Portland, OR, USA,
April 02 - 07, 2005). CHI '05. ACM Press, New York, NY, 2051-2052. DOI= http://doi.acm.org/
10.1145/1056808.1057095

33. Klemmer, S. R., Li, J., Lin, J., and Landay, J. A. 2004. Papier-MAch6: toolkit support for tangible
input. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Vienna, Austria, April 24 - 29, 2004). CHI '04. ACM, New York, NY, 399-406. DOI= http://doi.
acm.org/10.1145/985692.985743

34. B. Ullmer and H. Ishii. The metaDESK: models and prototypes for tangible user interfaces.
In Proceedings of 1997 ACM Symposium on User Interface Software and Technology, pages
223-232, 1997.

35. Carvey, A., Gouldstone, J., Vedurumudi, P., Whiton, A., and Ishii, H. 2006. Rubber shark as user
interface. In CHI '06 Extended Abstracts on Human Factors in Computing Systems (Montr6al,
Quebec, Canada, April 22 - 27, 2006). CHI '06. ACM, New York, NY, 634-639. DOI= http://doi.
acm.org/10.1145/1125451.1125582

36. Adam Kumpf. Trackmate: Large-Scale Accessibility of Tangible User Interfaces. Thesis (M.S.)--
Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media
Arts and Sciences, 2009.

143

37. Zigelbaum, J., Browning, A., Leithinger, D., Bau, 0., and Ishii, H. 2010. g-stalt: a chirocentric,
spatiotemporal, and telekinetic gestural interface. In Proceedings of the Fourth international
Conference on Tangible, Embedded, and Embodied interaction (Cambridge, Massachusetts,
USA, January 24 - 27, 2010). TEI '10. ACM, New York, NY, 261-264. DOI= http://doi.acm.
org/10.1145/1709886.1709939

38. Ishii, H. and Ullmer, B. 1997. Tangible bits: towards seamless interfaces between people, bits
and atoms. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Atlanta, Georgia, United States, March 22 - 27, 1997). S. Pemberton, Ed. CHI '97. ACM, New York,
NY, 234-241. DOI= http://doi.acm.org/10.1145/258549.258715

39. Hudson, S., Mankoff, J. Rapid construction of functioning physical interfaces from cardboard,
thumbtacks, tin foil and masking tape. UIST '06. 289-298.

40. Martinussen, E. S., Knutsen, J., and Arnall, T. 2007. Bowl: token-based media for children.
In Proceedings of the 2007 Conference on Designing For User Experiences (Chicago,
Illinois, November 05 - 07, 2007). DUX '07. ACM, New York, NY, 3-16. DOI= http://doi.acm.
org/10.1145/1389908.1389930

41. Adobe Flash http://www.adobe.com/products/flash/

42. Collapsible: The Genius of Space- saving Design. By Per Mollerup. Chronicle Books, 2001 ISBN
0811832368, 9780811832366

43. Bijan Aryana, Seyed Javad Zafarmand, Sardar Hajati Modaraie, Caro Lucas, and Somayeh
Naghibi, APPLICATION OF OBJECT ORIENTED THINKING IN PRODUCT DESIGN: DESIGN PROCESS
OF PERSONAL DIGITAL PARTNER. IASDR (International Association of Societies of Design
Research). 2007

44. ULLMER, B. 2002. Tangible Interfaces for Manipulating Aggregates of Digital Information. Ph.D.
dissertation, MIT Media Laboratory, 2002.

45. Choudhury, T., Borriello, G., Consolvo, S., Haehnel, D., Harrison, B., Hemingway, B., Hightower, J.,
Klasnja, P., Koscher, K., LaMarca, A., Landay, J. A., LeGrand, L., Lester, J., Rahimi, A., Rea, A., and
Wyatt, D. 2008. The Mobile Sensing Platform: An Embedded Activity Recognition System. IEEE
Pervasive Computing 7, 2 (Apr. 2008), 32-41. DOI= http://dx.doi.org/10.1109/MPRV.2008.39

46. Nintendo Wii Remote http://en.wikipedia.org/wiki/WiiRemote

47. Touch-a-tag http://www.touchatag.com/

48. Violet Mir:ror http://www.violet.net/_mirror-give-powers-to-your-objects.html

49. Brandon T. Taylor and V. Michael Bove, Jr.. 2009. Graspables: grasp-recognition as a user
interface. In Proceedings of the 27th international conference on Human factors in computing
systems (CHI '09). ACM, New York, NY, USA, 917-926. DOI=10.1145/1518701.1518842 http://doi.
acm.org/10.1145/1518701.1518842

50. Apple iPhone tech specs http://www.apple.com/iphone/specs.html

51. Jacob, R. J., Ishii, H., Pangaro, G., and Patten, J. 2002. A tangible interface for organizing
information using a grid. InProceedings of the SIGCHI Conference on Human Factors in
Computing Systems: Changing Our World, Changing Ourselves (Minneapolis, Minnesota,
USA, April 20 - 25, 2002). CHI '02. ACM, New York, NY, 339-346. DOI= http://doi.acm.
org/10.1145/503376.503437

52. Parkes, A., Poupyrev, I., and Ishii, H. 2008. Designing kinetic interactions for organic
user interfaces. Commun. ACM 51, 6 (Jun. 2008), 58-65. DOI= http://doi.acm.

144

org/10.1145/1349026.1349039

53. Parkes, A. 2008. Phrases of the Kinetic: Dynamic Physicality as a Construct of Interaction
Design. Thesis Proposal for the degree of Doctor of Philosophy at the Massachusetts Institute of
Technology

54. Kelley, T., Littman, J. The art of innovation: lessons in creativity from IDEO, America's leading
design firm, Random House, Inc., 2001. ISBN: 0385499841, 9780385499842. Pages 62-112

55. Raffle, H., Vaucelle, C., Wang, R., and Ishii, H. 2007. Jabberstamp: embedding sound and voice
in traditional drawings. InProceedings of the 6th international Conference on interaction Design
and Children (Aalborg, Denmark, June 06 - 08, 2007). IDC '07. ACM, New York, NY, 137-144.
DOI= http://doi.acm.org/10.1145/1297277.1297306

56. SEGD Annual Conference + Expo 2010, http://segd-dc20lO.com/

57. Choking hazard regulations http://www.nypirg.org/consumer/toysafety03/choking.html

58. Kendon., A. Gesture: visible action as utterance. Cambridge University Press, 2004. ISBN:
0521542936, 9780521542937. Pages 12-13

59. OnObject ABC demonstration video http://vimeo.com/12562654

60. OnObject Storytelling demonstration video http://vimeo.com/12562823

61. OnObject play session video documentation http://vimeo.com/12218305

62. OnObject Swordplay demonstration video http://vimeo.com/12562881

63. OnObject Amagatana demonstration video http://vimeo.com/10659648 starting at 1:00
64. Frei, P., Su, V., Mikhak, B., and Ishii, H. 2000. curlybot: designing a new class of computational

toys. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (The
Hague, The Netherlands, April 01 - 06, 2000). CHI '00. ACM, New York, NY, 129-136. DOI=
http://doi.acm.org/10.1145/332040.332416

65. Baudisch, P., Becker, T., and Rudeck, F. 2010. Lumino: tangible blocks for tabletop computers
based on glass fiber bundles. In Proceedings of the 28th international Conference on Human
Factors in Computing Systems (Atlanta, Georgia, USA, April 10 - 15, 2010). CHI '10. ACM, New
York, NY, 1165-1174. DOI= http://doi.acm.org/10.1145/1753326.1753500

66. Patten, J., Ishii, H., Hines, J., and Pangaro, G. 2001. Sensetable: a wireless object tracking
platform for tangible user interfaces. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (Seattle, Washington, United States). CHI '01. ACM, New York, NY, 253-
260. DOI= http://doi.acm.org/10.1145/365024.365112

67. E. M. Tapia, N. Marmasse, S. S. Intille, and K. Larson, "MITes: Wireless portable sensors
for studying behavior," in Proceedings of Extended Abstracts Ubicomp 2004: Ubiquitous
Computing, 2004.

68. Tom Igoe's accelerometer datalogging Processing sketch http://itp.nyu.edu/physcomp/sensors/
Code/DataloggerMulti

All URLs were last accessed on 7/29/2010.

145

Image Credits
The Idea
Figure 3 I/0 brush http://web.media.mit.edu/-kimiko/iobrush/
Figure 3 Amagatana + Fula version 2 http://www.flickr.com/photos/yuichirock/3446581519
Figure 3 Reactable http://www.flickr.com/photos/dav83/440110298/
Figure 3 G-Stalt demo http://zig.media.mit.edu/Work/G-stalt

Related Work
Figure 7 Control Freaks http://failedrobot.com/thesis/
Figure 10 Sniff http://www.nearfield.org/sniff/concept.html
Figure 10 musicBottles http://www.flickr.com/photos/danagordon/663460695
Figure 11 Picture This! http://www.flickr.com/photos/cati/4118659556
Figure 12 Picture This! http://web.media.mit.edu/-cati/portfolio/PictureThis.html
Figure 14 G-Speak screen capture from http://vimeo.com/2229299

System Design and User Experience
Figure 15 Notes image by Jean-Baptiste Labrune

Applications
Figure 38 Marble Answering Machine screen capture from Tangible Bits [18]
Figure 38 musicBottles http://www.flickr.com/photos/danagordon/663460695
Figure 38 Amagatana + Fula player http://www.flickr.com/photos/yuichirock/2337584358/
Figure 40 Amagatana version 1 umbrellas http://www.flickr.com/photos/
yuichirock/3033763205/
Figure 43 Knives by Herman Au http://www.flickr.com/photos/hermanau/366678492/
Figure 43 Knife skills by jeromebot http://www.flickr.com/photos/pixelmassive/4413235758/

Conclusions
Figure 54 Fantasia http://wwww.fanpop.com/spots/classic-disney/images/5776599/title/
fantasia-wa lpaper-wallpaper and http://www.graphicshunt.com/wallpapers/images/mickey_
mousein-fantasia-492.htm

All other images were created by the author.

146

